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Introduction 
 

“Philosophy, though unable to tell us with certainty what is the true answer to the doubts which it 

raises, is able to suggest many possibilities which enlarge our thoughts and free them from the 

tyranny of custom.” Bertrand Russell, The Problems of Philosophy, 1912. 

This famous Bertrand Russell quotation is representative of the spirit with which this work has been 

undertaken. This work aims to consider the methodology of actuarial science through the lens of the 

philosophy of science. In doing so, few ‘true answers’ will be irrefutably established. But I hope the 

work can offer some observations and suggest some possibilities that stimulate actuaries to consider 

different approaches to actuarial science and modelling. 

The following pages seek to step back from our day-to-day actuarial methods by questioning the 

robustness of their premises and logic, identifying their implied limits, and speculating on where 

alternative methods may offer greater prospects of success (and, indeed, sometimes re-considering 

what actuarial success might look like). Over the course of the work some specific and detailed 

answers to the methodological questions raised will be offered. But these answers can only be 

regarded as tentative and fallible opinions, rather than claims to truth. In the spirit of Russell above, 

the value of the work is not necessarily found in determining the right answers, but in demonstrating 

the benefit of asking the questions. I hope these pages stimulate more actuaries to ask these 

methodological questions and share their own tentative answers.  

Relatively little of this type of study has been published by actuaries, especially in the 21st century. 

The experience of undertaking this study allows me to testify to some of the good reasons for that. 

The process necessarily involves considering professional practice areas outside the methodologist’s 

own specific area of expertise and offering some constructive but contentious advice. It requires a 

willingness to stick one’s head above the parapet far enough to scan the horizon without worrying 

too much about being shot in the eye. This leads me to vouch for another quotation, this time from 

a methodologist in economics: 

“The study of methodology is an agonizing task; writing a book on the subject requires the skills of 

an individual who is at once presumptuous and masochistic.”1 

In truth, undertaking this work has been far from agony…in fact, this has been the most stimulating 

and enjoyable body of actuarial study that I have ever undertaken. But I often identified with the 

purported character traits. 

The Structure of this Work and How to Read It 

So, the following chapters are intended to free our actuarial minds from the tyranny of custom by 

examining the doubts raised by a philosophically-minded review of the methodology of actuarial 

science. This is performed in two stages. First, Part One provides an overview and discussion of some 

of the key areas of the philosophy of science that might be relevant to the methodology of actuarial 

science. Little of this discussion is specific to actuarial science, but it is written with actuarial contexts 

in mind where possible. Part Two then seeks to apply the ideas and insights developed in Part One to 

the specifics of actuarial science and its methodology.  

 
1 Caldwell (1994), p. 1. 



Part One is quite long and some of it is doubtless less than strictly relevant to actuarial science. The 

less philosophically curious or, indeed, the already philosophically well-read reader may choose to 

regard Part One as a sort of extended appendix - and thereby avoid reading it except where Part 

Two suggests it is useful. These readers can skip straight on to Part Two, which has been written 

with this approach in mind, and which therefore has frequent referencing and signposting of the 

relevant Part One material. 

  



 

 

  

 

 

 

 

 

 

 

 

 

Part One: Probability and Methodology in Science 
  



 

1. Philosophical theories of probability 
What do we mean by the word ‘probability’? At first sight, the answer may appear so intuitive and 

obvious as to make the question seem frivolous. Isn’t it merely the likelihood of some well-defined 

event happening over some well-defined time interval or amongst some specified number of 

instances? And didn’t the great Pierre Simon Laplace adequately address the question 200 years ago 

in the very first sentence of his treatment of probability: 

“The probability for an event is the ratio of the number of cases favourable to it, to the number of all 

cases possible when nothing leads us to expect that any one of these cases should occur more than 

any other, which renders them, for us, equally possible.”2 

By the end of this chapter the reader may have a fuller appreciation of the different interpretations 

that can be placed on Laplace’s definition. These alternative interpretations will demonstrate that 

the word ‘probability’ can mean surprisingly different things to different people. This is, in part, 

simply a consequence of the sheer breadth of linguistic uses to which the word is often put. But we 

shall find that these different interpretations are not merely linguistic – each approach comes with 

its own premises, logical development, mathematical theory and accompanying philosophical 

(epistemological) outlook.  

A few examples will help to illustrate the diversity of circumstances which a definition of probability 

might be required to encompass: what is the probability that the next throw of an unbiased die will 

produce a 6? If my first six throws of an unknown die produce 6 6s, what is the probability that the 

die is unbiased? What is the probability that I catch a fish on my next fishing trip? What is the 

probability that the Big Bang theory of the universe is correct? By how much did this probability 

increase when cosmic microwave background radiation was discovered in 1964? These examples 

highlight that the notion of probability can arise across very wide-ranging sets of circumstances. Just 

as importantly, small differences in the specific context in which probability is applied can serve as a 

potentially great source of confusion. Indeed, the subtleties that can arise in attempting a definition 

of probability have been the source of philosophical and scientific debate for at least the last few 

centuries.  

Before proceeding to further consider these subtleties, it may be helpful to note a couple of 

fundamental distinctions that will recur when discussing the meaning and usage of probabilities. 

First, it is helpful to always bear in mind that probabilistic thinking can be applied in two ‘different 

directions’. In one direction, we begin with a population of subjects or events whose probabilistic 

characteristics are assumed to be known (for example, suppose we can take it as known that a given 

die is unbiased). In this setting, we may wish to derive the properties of a sample from that 

population, which is often called the sampling distribution (for example, the probability distribution 

of the sum of the next ten rolls of the dice). In this setting, probability is ‘merely’ a mathematical 

discipline: the sample properties are mathematically deduced from the premises that are assumed 

to be known (and this will include assumptions about the sampling procedure as well as the 

properties of the population. For example, we may assume the die is rolled in a way that makes it 

equally likely that any side lands face up).  

In the other direction, our starting point is a set of observations from a sample of population data (in 

the above example, the results of each of the next ten rolls of the die). We then use this sample data 

 
2 Laplace (1812) 



to make an inference about the characteristics of a population (to continue the example, this could 

be: what is the probability the die will land on a 6; or, is there sufficient evidence to reject the 

hypothesis that the die is unbiased). Probabilities inferred when working in this second direction 

have historically been referred to as indirect or inverse probabilities. Today, we would typically refer 

to this form of activity as statistics or statistical inference. Whatever we call it, it inevitably involves 

greater conceptual and philosophical challenges than the mathematical manipulation of known 

probabilities. Whilst the notion of probability has been recognised in some form for thousands of 

years and was explicitly mathematically developed in the mid-17th century, no progress was made in 

establishing a scientific basis for statistical inference until the pioneering work of philosophically-

minded mathematicians such as Bayes and Laplace at the end of the 18th century. And it has been 

steeped in controversy ever since. 

Moving on to the second key distinction we wish to make before discussing probability definitions in 

fuller detail. Since the development of probabilistic thinking in the 17th and 18th centuries, there has 

been some recognition of two quite different ways in which the notion of probability can arise – 

what Ian Hacking, the philosopher and historian of probability and statistics, has referred to as the 

‘Janus-faced’ character of probability3. One face considers probability in the context of the frequency 

with which a particular kind of thing occurs amongst a large group of similar things (this is 

sometimes referred to as an objective probability, or, unhelpfully, as a statistical probability; Hacking 

used the term ‘aleatory’ to refer to probability in this setting, but his terminology hasn’t really 

caught on); but probability is also widely used as a measure of how strongly we believe a specific 

single thing to be true (such as the Big Bang theory). This latter use of probability is closely related to 

the philosophical discipline of epistemology – the theory of knowledge. Does knowledge only arise 

when we know something is true? What if we do not have a sufficiently complete understanding of 

the world to claim we know something is true, but we have reason to think it is probably true? What 

does ‘probably’ mean in this setting? Can probability theory be useful employed to help deal with 

such forms of knowledge?  

Below we consider how philosophers and probabilists have sought to answer some of these 

questions in competing theories of what is meant by ‘probability’. 

1.1 Theories of objective probability 
We begin with theories of objective probability. This is the natural place to start as objective theory 

is (arguably) the most straightforward and intuitive way of thinking about probability. It is also the 

narrowest way of thinking about probability – as we shall see, objective theory’s answer to some of 

the more philosophically-demanding probabilistic questions is essentially that what is being 

discussed is not probability and is therefore no concern of theirs.  

To an objectivist, probability is a real property of a physical phenomenon that is, at least in principle, 

capable of objective measurement. In the words of Sir Karl Popper, a leading 20th century proponent 

of the objective approach to probability, probabilities are ‘abstract relational properties of the 

physical situation, like Newtonian forces’4. 

The ‘standard’ objective theory of probability is the frequentist (or frequency) theory. It has been 

argued that Aristotle was the first to allude to a frequency theory of probability when he wrote in 

Rhetoric that probability is ‘that which happens generally but not invariably’5. But the pioneers of 

 
3 Hacking (1975) 
4 Popper (1959), p. 28. 
5 Nagel (1939), p. 18. 



probability of the 18th and 19th centuries such as Laplace, Bayes and Poisson did not (explicitly) 

define probability in a frequentist way. It wasn’t until the mid-19th century that the frequency theory 

started to be developed in an explicit and mathematical form. The best-known exposition of the 

frequency theory from that era is provided by the Cambridge philosopher John Venn in his book 

Logic of Chance, which was first published in 18666. The classic 20th century treatment of the 

frequency theory was produced by the German mathematician and physicist Richard Von Mises in 

19287. We shall focus mainly on Von Mises’ theory as it is more mathematically rigorous than Venn’s 

and is generally regarded as superseding it. We will still, however, have occasion to reflect on some 

of the ideas and perspectives that Venn articulated in his early development of the theory. 

At the core of Von Mises’ frequency probability theory is his mathematical concept of a collective, 

which he defines as ‘a sequence of uniform events or processes which differ by certain observable 

attributes’8. For example, one of these ‘uniform events’ could be the throw of a die and the 

observable attribute could be the die landing 1.  Von Mises defines the probability of an attribute A 

as: 

𝑃(𝐴) = lim
𝑛→∞

𝑚(𝑎, 𝑛)

𝑛
 

where n is the number of events in the collective; A is some specified attribute of the events in the 

collective; and m(a,n) is the number of events with attribute A in a collective of size n. 

The idea of defining probability by reference to a set of events when the number of events in the set 

tends to infinity was first introduced by Venn and is sometimes referred to as the Venn limit. In 

order to ensure the probability as defined above is mathematically well-behaved, Von Mises had to  

postulate two axioms: an axiom of convergence (which states that the mathematical limit used in 

the definition exists); and an axiom of randomness (which specifies that the order of the elements in 

the collective is not arranged in any determinable way).  

The Venn limit and Von Mises’ axioms are discussed further below. But before we consider the 

logical and philosophical issues that arise with this definition, it is worth noting that Von Mises’ 

probability definition seems to fit well with the essence of what is often meant by ‘probability’. It is 

clearly different from, but not obviously inconsistent with, the definition given by Laplace, quoted 

above. Like the Laplace definition, it is based on a ratio of ‘favourable’ cases to the total number of 

‘equally possible’ cases. Bernoulli’s law of large numbers holds true when probability is defined using 

the Von Mises definition. Indeed, the law of large numbers becomes tautological under Von Mises’ 

definition of probability. Some philosophers of science and probability such as Sir Harold Jeffreys 

have argued that this suggests Bernoulli had a much broader definition of probability in mind when 

he derived the law of large numbers (otherwise his derivation would have been a lot simpler.)9 We 

will return to this issue of the narrowness of the frequentist definition of probability later. First, we 

briefly consider the three key philosophical issues that arise with Von Mises’ definition. 

Philosophical Concerns with Probability as a Limiting Frequency 

Some philosophers have objected to a definition of probability that relies on the idea of a collective 

or set of elements whose size tends towards infinity. Sir Harold Jeffreys, a Cambridge Professor of 

geophysics and astronomy, was an important 20th century thinker and writer on probability and its 

 
6 Venn (1888) 
7 Von Mises (1928) 
8 Von Mises (1928), p. 12. 
9 Jeffreys (1961), p. 404. 



philosophical challenges whose work we will discuss further later. He rejected the frequency theory 

of probability, and the Venn limit was one of his bones of contention. He argued that the need for a 

priori axioms such as those used by Von Mises in his frequency definition defeated the purpose of so 

explicitly defining the probability. To Jeffreys, it would be simpler and no less ambiguous to simply 

take the probability as a basic concept that does not have an explicit definition but is simply defined 

by the rules that govern its behaviour: 

“The very existence of the probability on Venn’s [or Von Mises’] definition requires an a priori 

restriction on the possible orders of occurrence [an axiom of randomness in Von Mises’ 

terminology]. No supporter of this view has succeeded in stating the nature of this restriction, and 

even if it were done it would constitute an a priori postulate, so that this view [a frequency theory 

definition of probability] involves no reduction of the number of postulates involved in the 

treatment of probability as an undefined concept with laws of its own.”10 

This view is not, however, universally shared today. The mathematical rigour of Von Mises’ axiom of 

randomness was contested by Jeffreys and others. But the mathematician Alfonso Church11 provided 

(a few years after Jeffreys’ comments above were published) a refinement of Von Mises’ definition 

of randomness which many have argued furnish it with ample mathematical rigour12.  

The concerns with Von Mises’ axiom of randomness are concerns with the frequency definition’s 

abstract logical properties. Jeffrey’s above objection to the Venn limit is also based on logical 

grounds. But concerns have also been raised about the empirical interpretation and 

implementability that arises with a definition based on the Venn limit. Quoting Jeffreys once more: 

“A definition is useless unless the thing defined can be recognized in terms of the definition when it 

occurs. The existence of a thing or the estimate of a quantity must not involve an impossible 

experiment.”13 Jeffreys therefore ruled out “any definition of probability that attempts to define 

probability in terms of infinite sets of observations, for we cannot in practice make an infinite 

number of observations”.14  

This objection can be viewed as what a philosopher of science may call an operationalist perspective. 

Operationalism is a philosophical doctrine of science that argues that we cannot know the meaning 

of something unless we have a way of empirically measuring it by means of a set of well-defined 

empirical operations (which would typically be taken to mean experimental operations or some 

other form of controlled observation). It therefore requires the basic objects of scientific theories to 

be defined with reference to some observable phenomenon (and so is opposed to the use of 

theoretical or non-observable entities). It was most notably developed as a philosophical doctrine by 

the experimental physicist and Nobel laureate, Percy Williams Bridgman in his 1927 book, The Logic 

of Modern Physics. Operationalism was a popular perspective amongst philosophers of science 

during the second quarter of the twentieth century (when Jeffreys was in his prime). It was in 

sympathy with the empiricist zeitgeist of the era, and found some support amongst the logical 

positivists of the Vienna Circle (who will be discussed further in Chapter 2).  

Operationalism was never universally accepted, however (Einstein, and other theoretical physicists 

were, perhaps unsurprisingly, not in favour). It has retained some support ever since its 1930s 

heyday, but it has not necessarily been an orthodox perspective since the start of the post-war era. 

 
10 Jeffreys (1937), p. 221. 
11 Church (1940) 
12 See Gillies (2000), p. 105-9 for a fuller discussion. 
13 Jeffreys (1961), p. 8. 
14 Jeffreys (1961), p. 11. 



The arguments in support of the importance of the role of non-observable, theoretical entities in the 

twentieth century’s most successful scientific theories has been too great to ignore. However, some 

may still hold the view that operational concepts should be used wherever possible, and may thus 

view the replacement of theoretical concepts with operational ones as a form of scientific 

progress15.  

It has been argued that the frequency theory is fundamentally operationalist in the sense that the 

probability is defined directly with reference to empirical observation. Indeed, Von Mises argued 

that the observation of large (but finite) empirical collectives provided a close enough approximation 

to his mathematical definition to be acceptable to operationalists. And there are other areas of 

natural science where empirically unobservable limits are used in definitions (most obviously, 

anything involving integral calculus). But this view was evidently not held by other leading 

philosophers with operationalist outlooks (Jeffrey’s opinion on the frequency theory’s inadequacy in 

light of operationalist requirements was also shared by other philosophers of probability of the era 

such as De Finetti, who we will also discuss further below)16. 

In contemporary writing, some anti-frequentist thinkers have argued that the difficulties with the 

empirical implementation and interpretation of the frequency theory are especially acute for very 

low-probability events17. In such cases, it has been argued, the observation of an extremely-unlikely 

event such as being dealt a club from a randomly shuffled deck of cards (with replacement) 1000 

times in a row would lead to the immediate conclusion that there was something wrong with the 

experimental set-up, and hence such an event’s probability could never be estimated in frequentist 

terms. But ultra-low probabilities are used regularly in physical science – for example, the probability 

that an alpha particle tunnels into the nucleus of an U-238 uranium atom is known to be around 10-

38. This probability has been estimated through the experimental observation of the behaviour of a 

huge number of alpha particles and uranium atoms. The frequency approach to probability appears 

perfectly suited to the definition of this empirically-observed ultra-low probability. 

The Reference Class Problem 

The second philosophical issue that arises with the frequency theory is often called the reference 

class problem. Recall above that Von Mises’ definition referred to a collective as ‘a sequence of 

uniform events or processes which differ by certain observable attributes’. What does it mean for 

two events to be uniform but different? Clearly, the events cannot be uniform in every respect, 

otherwise they would each result in the same outcome and the probability could only be 0 or 1 – so 

there must be some form of variation in the attributes of the ‘uniform events’ in order for non-trivial 

probabilities to be obtained. In Venn’s definition, he described how the instances of a series would 

have a number of attributes in common (which define them as belonging to the series), and there 

would also be some attributes that are found in some instances and not in others (and these 

attributes arise in a ‘certain definite proportion of the whole number of cases’). These parts of Von 

Mises’ and Venn’s definitions are essentially similar. So, in Von Mises’ terminology, in order for an 

event to qualify for inclusion in a collective, each event must be uniform in the sense that it has 

attributes B1, B2,…, Bn. And of these events that have those attributes, some portion will also have 

attribute A, and the remainder will not. The collective, and hence the probability of A, changes with 

the choice of ‘uniform’ attributes B. If we define the collective with reference to B1 only, the 

probability of A is different to when we define the collective with reference to B1 and B2. The 

 
15 For a fuller discussion of the philosophical doctrine of operationalism, see, for example, Machlup (1978), 
Chapters 6 and 7. 
16 See Gilles (2000), p. 97-104 for a fuller discussion of operationalist concerns about the Venn limit. 
17 See, for example, Jaynes (2003), p. 323. 



reference class problem is concerned with the apparent arbitrariness of the choice of the uniform 

attributes that determine the collective. 

This issue will of course be familiar to actuaries, demographers, insurance underwriters or indeed 

anyone who has thought about the identification of homogenous risk groups. One of the most 

influential (philosophical) pieces addressing this point was written by the Oxford philosopher A.J. 

Ayer in 196318. He used an actuarial example to illustrate his point. He considered the probability 

that a man survives to age 80. This probability must be measured with reference to some class of 

lives. But which class? Which set of attributes do we assume are uniform across the set? The class 

could refer to any or all of characteristics such as sex, profession, smoking habits, drinking habits and 

present health and so on. The choice must involve a seemingly arbitrary decision about the 

granularity of the reference class. Intuitively, the class that includes the most relevant information 

that is available would seem the ‘right’ probability and Ayer’s philosophical reflections led him to 

this conclusion – he argued for the use of ‘the narrowest class in which the property occurs with an 

extrapolable frequency’19.  

Ayers was far from the first philosopher to raise the reference class problem. Nor was he the first 

philosopher to consider the rule of using the narrowest available reference class – it was mooted by 

Venn one hundred years earlier. Later we will discuss John Maynard Keynes’ approach to probability. 

Suffice it to say for now, he did not subscribe to the frequency theory, and in his view, the difficulties 

it had with the reference class problem led him to conclude they ‘appear to me insurmountable’20. 

He explicitly rejected the law of the narrowest reference class, highlighting that the logic implied a 

reference class of 1: 

“If the process of narrowing the class were to be carried to its furthest point, we should generally be 

left with a class whose only member is the proposition in question, for we generally know something 

about it which is true of no other proposition.”21 

Ayers’ caveat of ‘extrapolable frequency’ attempts to address Keynes’ point, but the ambiguity of 

this term and the absence of an explicit definition by Ayer arguably merely re-states the problem of 

arbitrariness in a different form. 

Ayer’s approach to the reference class problem is, arguably, an epistemic one: he advocated using 

the narrowest reference class that is known in the given situation. That is, the reference class is 

epistemically relative. This relativity may be philosophically unappealing to objectivists – recall above 

how Popper regarded probability as a real property of a physical object. Such a perspective leaves 

little room for epistemic relativity. Some objectivists may therefore prefer to argue that there are 

some physical phenomena that are irreducibly statistical, even when given all information relating to 

the phenomena. This is sometimes referred to as ontological indeterminism22. Classical Newtonian 

physics and the Laplacian determinism that accompanied it is incompatible with the notion of 

ontological indeterminism. But quantum physics, which was probably the most successful physical 

scientific theory of the twentieth century, has irreducibly statistical descriptions of physical 

phenomena at the core of the theory. Quantum physics provides probabilistic descriptions for the 

behaviour of sub-atomic particles such as photons. When considered in large volumes, these 

descriptions can provide predictions that are consistent with classical physics. But quantum physics 

 
18 Ayer (1963) 
19 Ayer (1963), p. 202. 
20 Keynes (1921), p. 103. 
21 Keynes (1921), p.103. 
22 Ben-Haim (2014) 



does not make deterministic statements about the future behaviour of individual particles, even 

when the current state of the physical system is fully specified. Dirac went so far as to say that, when 

considering the behaviour of an individual photon, ‘it cannot be investigated and should be regarded 

as outside the domain of science’23. 

When a phenomenon is irreducibly statistical, its narrowest reference class will not be reducible to a 

single instance in the way Keynes suggested. Instead, in the above terminology, the physical system 

will have a finite number n of attributes, B1,…Bn, and the relevant reference class will be of a size 

greater than 1 even when all of these attributes are known and specified (and it may indeed be of 

infinite size). So, from this perspective, in the case of recurring physical phenomena (such as the 

radioactive decay of atoms) there will be an objectively homogenous reference class of unlimited 

size24. The concept of objective homogeneity in the presence of irreducibly statistical phenomena 

fits the frequency definition extremely well, providing a form of solution to the reference class 

problem. However, there are (at least) two potential rebuttals of this argument: some philosophers 

may reject the idea that anything is irreducibly statistical (that is, ultimately every process is 

deterministic given sufficient knowledge of its state); second, if the frequency definition can only 

apply to irreducibly statistical physical phenomena such as radioactive decay, this seems highly 

restrictive and rules out many intended uses of the notion of probability.   

Objective Probability and Singular Events 

The reference class problem and the Venn limit are two major areas of philosophical concern with 

the frequency definition of probability. A third major philosophical topic that can arise with the 

frequency theory is the difficulty in applying it to singular, unique events. As discussed above, the 

frequency theory defines a probability for a collective, i.e. for a set of a very large (or infinite) 

number of events that share some specific common attributes. The probability applies to the 

collective, not to the events that constitute it. There are, however, many uses of probabilities that 

cannot be related to this idea of an infinite series of recurring, uniform events. For example, what is 

the probability of my horse winning next year’s Grand National? What is the probability that a given 

scientific hypothesis is true? In Venn and Von Mises’ views, quantitative probability is not applicable 

to such cases – there is no objective probability that can be assigned to these singular events, and 

that is essentially the end of the matter. As far as they were concerned, the probability does not 

meaningfully exist for these specific events. Von Mises used the mortality rate of an individual to 

emphasise the point: 

“We can say nothing about the probability of death of an individual, even if we know his condition of 

life and health in detail. The phrase ‘probability of death’, when it refers to a single person [rather 

than a collective of uniform lives] has no meaning at all for us.”25 

This need not necessarily offend traditional actuarial thought on mortality modelling, which is of 

course based on the estimation of probabilities that are applicable to reasonably homogenous 

groups rather than specific individuals. But it is more challenging to fit such a theory with, say, 

approaches to estimating the probabilities associated with specific extreme insurable events (say, a 

particularly strong hurricane next year in Florida).  

The frequency theory’s trouble with singular events can be related back to Keyne’s perspective on 

the reference class problem. Recall, for a final time, Von Mises’ definition of a collective as ‘a 

 
23 Dirac (1958), p. 6. See Ben-Haim (2014) for further discussion. 
24 See Salmon (1984), especially Chapter 3, for an extensive philosophical discussion of these terms and ideas. 
25 Von Mises (1928), p. 11. 



sequence of uniform events or processes which differ by certain observable attributes’. We saw that 

the essence of the reference class problem is that we need to decide which attributes are used to 

determine what defines the uniform events (for example, all lives are male and aged 50 at a 

particular date), and hence which attributes may be different (everything else), and there is no 

obvious objective rule for making this partition. As we move attributes from the ‘different’ category 

into the ‘uniform’ category, we may reach the limiting case where the collective of uniform events 

consists of one singular, unique non-repeatable event which has a probability of 0 or 1. 

Below we will consider another theory of objective probability that aims to address the three 

philosophical concerns outlined above (the Venn limit; the reference class problem; and the 

applicability to singular events) whilst still fitting squarely within the objective approach to 

probability. Before we move on from the frequency theory however, it may be interesting to note 

what the philosophers who have advocated a frequency approach have thought about whether and 

how objective frequency-based probabilities can be found empirically. Venn, in particular, was an 

empiricist by philosophical outlook. In Venn’s view, the series of events that have the characteristics 

postulated in his frequency theory would rarely in fact be found in nature and would tend to only 

arise in artificial games of chance. He was therefore sceptical about the value and reliability of 

empirical statistical analysis. He argued this was because nature’s conditions were rarely, if ever, 

static. Rather, they tend to be subject to what Venn termed ‘an irregular secular variation’. As a 

result, there was ‘really nothing which we can with propriety call an objective probability’26. To 

Venn, an empirical time series would almost always be ultimately non-stationary: 

“That uniformity which is found in the long run, and which presents so great a contrast to the 

individual disorder, though durable is not everlasting. Keep on watching it long enough, and it will be 

found almost invariably to fluctuate, and in time may prove as utterly irreducible to rule, and 

therefore as incapable of prediction, as the individual cases themselves.”27 

Today, it is widely accepted that stable probabilistic universal laws exist in the natural sciences (for 

example, in the field of radioactivity mentioned in examples above). But the form of non-stationarity 

described by Venn is a perennial problem in the social sciences (changes in life expectancy; 

behaviour of inflation rates, etc.) The theme will therefore recur in the discussion of modelling in the 

social sciences later in Chapters 3 and 4, and indeed in the discussions of actuarial science and 

modelling in Chapters 5 and 6.  

From Frequency to Propensity 

The propensity theory of objective probability can be viewed as a modification of the frequency 

theory that is primarily designed to permit the existence of probabilities for singular events, whilst 

remaining firmly within the philosophical framework of objective probability. It has numerous 

versions, perhaps the most notable of which was developed by Sir Karl Popper, who was one of the 

most influential philosophers of science of the 20th century28.  

The essential idea of the propensity theory is that it goes a step further than the frequency theory by 

specifying that the events within a collective are generated by the same set of repeatable 

conditions: 

“The frequency interpretation always takes probability as relative to a sequence which is assumed as 

given….but with our modification, the sequence in its turn is defined by its set of generating 
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conditions; and in such a way that probability may now be said to be a property of the generating 

conditions. But this makes a very great difference, especially to the probability of a singular event. 

For now we can say that the singular event possess a probability owing to the fact that is an event 

produced in accordance with the generating conditions, rather than owing to the fact that it is a 

member of the sequence.”29 

Popper argued that the propensity theory’s idea of a set of underlying generating conditions allowed 

the event to be uncoupled from its sequence or collective, and therefore allowed the probability 

property to be associated with a singular event that belonged to the collective, rather than only to 

the collective itself. This detachment from the collective also removes the reliance on the Venn limit 

in the definition of the probability – the probability applies to a given event irrespective of how 

many times the conditions that generate the event are repeated, and so there is no necessity to 

consider repetitions that approach infinity in size. It is less clear how the propensity theory alters the 

frequency theory’s difficulties with the reference class problem: any arbitrariness in the specification 

of attributes that defines uniformity of events in the frequency collective would seem to be 

equivalent to an arbitrariness in the specification of the generating conditions in the propensity 

theory. 

It should be noted that, whilst Popper believed that the propensity theory would permit 

probabilities to be attached to singular events rather than only collectives, he did not believe that 

such a probability could be applied to any singular event. In particular, Popper argued that where 

‘objective conditions of the event are ill-defined and irreproducible’, no objective probability can 

apply. As noted above, Popper required the generating conditions to be well-defined and repeatable 

in order for probability to apply. The notion of a repeatable singular event is not a straightforward 

concept and it does not have an obvious applicability to specific events such as my fishing trip this 

evening. So, from this perspective, it seems that the propensity theory only represents a very partial 

solution to the frequency theory’s difficulty with singular events. Like Venn, Popper’s position was 

that meaningful quantitative probabilities simply could not be associated with many forms of 

uncertain phenomena. 

The remainder of Chapter 1 will discuss broader definitions of probability that attempt to encompass 

the broader set of circumstances in which we find probabilistic ideas arising. 

1.2 Theories of subjective probability  
In the previous section, probability was taken to be a characteristic of the physical world that was 

capable, in principle, of objective measurement. An objective probability may be unknown, or 

subject to measurement challenge, but it is not merely a perception of an individual: it exists as a 

property of a thing and this property is assumed to be independent of human knowledge. The 

frequency theory says probability is merely the frequency with which a certain attribute arises within 

a very large set of events that share some other defined attributes in common. When objective 

probability is considered from the propensity perspective, probability depends on the conditions 

associated with the event in question and these conditions are well-defined and repeatable features 

of the physical world. That is how an objectivist defines probability. It is a fairly intuitive perspective. 

But this perspective restricts the application of probability to mass phenomena and repeatable 

events. An objectivist may concede without contradiction (as Venn did) that probabilities defined in 

this way can rarely be found ‘in the real world’. 
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In common language (and indeed in business, science and beyond), the term ‘probability’ is used 

much more widely than this. The objectivist definition places much of this usage outside of the 

mathematical theory of probability. An objectivist would argue that such uses of the term are 

generally not capable of mathematical meaning. However, other probability theorists have 

developed a much broader and more flexible approach to the meaning of probability that can 

encompass a wider set of applications (indeed, an unlimited field of applications) whilst still being 

mathematically well-behaved. Well-behaved here is generally taken to mean being consistent with 

the commonly accepted mathematical axioms of probability such as those developed by 

Kolmogorov30.  That is, in this setting, and as alluded to in the quotation of Jeffreys in Chapter 1.1, 

probability is defined indirectly by its axiomatic relations, rather than explicitly.  

Thus, if something behaves in a way that is consistent with the Kolmogorov axioms, that may be 

good enough for a mathematician or probabilist to allow it to be called a probability. But the 

philosopher may wish to find another explicit interpretation for the meaning of probability that is 

contrary to the objectivist perspective. The standard philosophical alternative to the objectivist 

approach is called the subjectivist approach. It takes a completely different starting point for what is 

meant by probability. Here, probability is interpreted as an individual’s degree of belief in a given 

event occurring or being true. It is therefore always conditional on the knowledge and information 

available to the individual at a given point in time. In this setting, probability has an epistemological 

interpretation. It is a measure of the incompleteness of an individual’s knowledge about the 

determinants of an event. It can be related to Laplace’s famous demon of universal determinism - 

that is, the view that, with perfect knowledge of all relevant conditions and attributes, it can be 

known with certainty whether an event will or will not occur. But it is not necessary to subscribe to 

universal determinism in order to find a use for epistemic probability. 

Philosophers and historians have a range of views on when this epistemological interpretation of 

probability first emerged. Some, such as Sir Harold Jefrreys, have argued it has been a part of 

probabilistic thinking since before Bernoulli’s Law of Large Numbers was published in 1713. It is 

widely regarded as being implicit in Bayes’ paper of 1763. Historians such as Lorraine Daston have 

argued it emerged as a distinct, rather than implicit, part of probability in 1837 in the work of 

Poisson31.  

Within this epistemological approach to probability there are two philosophically distinct 

perspectives. One is to define probability as the degree of reasonable or rational belief in the truth 

of a statement. In this case, the probability is uniquely defined by the rational and logical processing 

of the specified information that it is conditional on – the probability is not a subjective quantity that 

depends on the judgment of the individual. This is called logical probability. It is an attempt to 

enumerate inductive logic. In the other approach to epistemic probability, subjective theories of 

probability relax the rationality stipulation. Instead, these theories’ starting point is that individuals 

can come to their own subjective assessment of such a probability. And, rather than developing 

logical rules for how individuals make such assessments, subjective theories merely attempt to infer 

what these subjective probabilities are from the actions of the individual.  

The logical approach pre-dates the subjective approach, and some form of it has been in use since 

Bayes and Laplace independently developed approaches to statistical inference between 1763 and 

1810. The key mathematical developments in the subjective theory of probability were developed 

independently and contemporaneously by Frank Ramsay and Bruno De Finetti in the 1920s and 
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1930s32. As we shall see below, Ramsay and De Finetti share the title of a fundamental theorem in 

subjective probability. Despite this, their philosophical outlooks differed. Ramsay viewed the 

frequency theory of objective probability as a perfectly reasonable approach to probabilistic 

reasoning in some circumstances. De Finetti’s philosophy wholly rejected the objectivist’s 

philosophical perspective in which probability was a physical property of something, arguing that 

such a view implied a ’mysterious pseudo-world’33. From a historical perspective, these 

developments in subjective probability in the 1920s and 1930s may be viewed as a reaction to the 

then-prevailing view that the limitations of the logical approach increasingly seemed 

insurmountable. We will discuss these limitations of the logical approach, and contemporary 

advances in addressing them, in Chapter 1.3. First, this section introduces the subjective theory of 

probability.  

Discovering Consistent Implied Subjective Probabilities: Coherent Betting Odds 

Individuals’ subjective degrees of belief in uncertain future events would seem to be an inherently 

psychological phenomena – how can such a thing be observed and quantified? Perhaps the most 

obvious response is to ask the subject what they believe. But such an approach would be full of 

ambiguities – what is to motivate the subject to tell the truth? What if the subject does not fully 

understand what their own motives would be in the hypothetical circumstances in question? Self-

avowal is considered of dubious reliability not just by subjective probabilists but by economists, 

historians and others. So, to the subjectivist, probability is determined by observing decision-making 

actions under uncertainty. Ramsay and De Finetti each independently proposed that subjective 

probabilities should be measured by observing individuals’ (possibly hypothetical) decisions or 

actions in a particular way: by observing the minimum odds that an individual required in order to 

induce them to bet on a given event34. So, for example, if John required a minimum pay-out 

(including the return of his initial bet) of £3 to be induced to bet £1 now on the event that it will rain 

tomorrow at noon, his (current) subjective probability of it raining tomorrow would be 1/3.  

The use of betting odds to imply subjective probabilities was not a completely new idea when it was 

advocated by Ramsay and De Finetti in the 1920s and ‘30s. Earlier works on the philosophy of 

probability such as Venn’s Logic of Chance had discussed the idea35. But Ramsay and De Finetti both 

identified an important property of these subjective probabilities that elevated subjective 

probability to a level of mathematical respectability. This property became known as the Ramsay-De 

Finetti theorem: if the betting odds are specified in a way that avoids it being possible for the 

individual to construct a combination of bets that will generate a certain profit or loss (what an 

 
32 The key papers of Ramsay and De Finetti, along with other important papers on the topic of subjective 
probability, can be found in Kyburg and Smokler (1980). A comprehensive presentation of De Finetti’s 
conception of probability theory and statistical inference can be found in De Finetti (1975). 
33 Hacking (1965), p. 211. 
34 Technically, the stakes of the bet must be assumed to be small relative to the overall wealth of the bettors 
so that complications arising from individual risk-aversion and utility preferences can be avoided. Ramsay, in 
particular, developed an approach that could allow for the individual’s utility function when inferring the 
subjective probabilities from their betting requirements. This foreshadows the linkage between subjective 
probability and asset pricing. Historically, the interrelationship between these two disciplines appears to have 
been significant. For example, it was Leonard Savage, the leading subjectivist probabilist, who first introduced 
Paul Samuelson, the economist, to the stochastic modelling work of Bachelier that arguably provided the 
genesis of the Black-Scholes-Merton equation. Savage played an important role in popularising the subjective 
approach to probability during the third quarter of the 20th century. See Savage (1972). 
35 Venn (1888), p. 144-6. 



economist would call an arbitrage), then the subjective probabilities will satisfy all the standard 

mathematical axioms of probability. In particular: 

• The subjective probabilities of a set of mutually exclusive and exhaustive events will sum to 

1 (the Addition Law).  So, in the above example, John’s subjective probability that it is not 

raining tomorrow at noon must be 2/3 (which would be implied by requiring a pay-out of 

£1.50 in the event of it not raining at noon tomorrow).   

• The subjective probability of two events, A and B, jointly occurring is equal to the probability 

of A occurring multiplied by the conditional probability of B occurring given A occurs (the 

Multiplication Law). Note that this requires the subject to quote betting quotients on joint 

bets and conditional bets (in the conditional case, the bettor would have his stake returned 

if the conditioning event did not occur). So, to extend the above example, suppose John also 

holds a subjective probability for the joint occurrence of the event that it rains tomorrow at 

noon and that Red Rum wins that afternoon’s horse race of 1/5 (and so the joint bet pay-out 

is £5). Then his subjective probability that Red Rum wins given it will rain tomorrow at noon 

must be 3/5. And so the pay-out on a £1 conditional bet must be £1.67 (or exactly five-thirds 

of £1) in order for the bets to be arbitrage-free36. 

Equivalently, if the subjective probabilities for a set of events satisfy the axioms of probability, then 

the bets will be arbitrage-free. That is, Kolmogorov’s axioms (or similar) are necessary and sufficient 

conditions for the arbitrage-free property. This arbitrage-free property is referred to by subjectivists 

as coherence. 

There are, perhaps inevitably, some conceptual difficulties associated with the framework of 

discovering subjective probabilities by observation of betting odds. What if there is a possibility that 

the event in question may never be conclusively known to be true or false? For example, does it 

make sense for an individual to bet on the probability of a scientific theory being true, when it may 

take many hundreds of years (or, indeed, forever) to establish if it is true or not? After all, 

Democritus first proposed a theory of molecular reality around 400 BC. Such a theory (albeit in 

somewhat more sophisticated form), was not widely accepted by the scientific community until the 

early twentieth century37. De Finetti argued that a probability could only be associated with a 

statement or event that was well-determined or unequivocally individuated, by which he meant that 

‘a possible bet based upon it can be decided without question’38. This restricts the domain of 

applicability of subjective probability, thereby excluding the use of probabilities from some forms of 

statements that are objectively (or physically) true or false.  

The betting argument also assumes there is always a price that exists such that an individual will be 

willing to participate in a bet on such an event (unless it is known to be impossible). That is, the 

individual cannot merely say, for example, they have no knowledge or understanding of the event 

and hence refuse to consider the bet39. This is an important assumption – as we shall see below, the 

determination of probabilities in conditions of total ignorance has been a philosophically 

 
36 In the event it does not rain (probability of 2/3), the bettor’s stake of £1 is returned. In the event it does rain 
and the horse wins (probability of 1/5), the bettor receives £1.67. In the event it does rain the horse loses 
(probability of 7/15), the bettor receives zero. Note the average pay-out (including return of stake) is £1, i.e. 
the size of the initial bet. 
37 The interested reader is referred to Nye (1972) for an excellent account of the history of scientific theories of 
molecular reality. 
38 De Finetti (1975), Chapter 2.3. 
39 See De Finetti (1975), Chapter 3.3.3. 



contentious area that has sometimes been identified as the Achilles heel of some definitions of 

probability (logical probability, in particular).  

Finally, another complication, as briefly noted above, is that we must untangle utility and risk-

aversion from the subjective probability implied by the bet size. Those schooled in financial 

derivative pricing theory will be familiar with the idea that prices alone can only imply risk-neutral, 

rather than actual (‘real-world’) probabilities. The same logic applies here. De Finetti argued that the 

risk-aversion complication could be avoided by assuming the bet sizes were small relative to the 

individual’s overall wealth40. 

So, to summarise. We noted above that subjective probability theory differs from logical probability 

theory in the sense that the subjective theory does not attempt to establish a rational method for 

determining probabilities as degrees of belief. The subjective theory places no limits on how the 

probability of any given event is assigned by an individual. But some form of rationality restriction is 

necessary if the related probabilities are to be collectively ‘well-behaved’ (that is, to comply with 

probability’s standard mathematical axioms). This restriction is the subjectivist’s concept of 

coherence, which is essentially the same as the economist’s concept of no-arbitrage, and it is 

encapsulated by the Ramsay-De Finetti theorem. The theorem is regarded as important because it 

means that, irrespective of philosophical outlook or the epistemological interpretation that is 

attached to subjective probabilities, the theorem makes the subjective perspective an 

unambiguously valid way of interpreting the mathematic calculus of probability. Nonetheless, there 

are some noted conceptual difficulties with the universal use of betting odds in the discovery of 

subjective probabilities. 

Exchangeability 

As noted above, the conditionality of subjective probabilities on the available evidence implies that, 

to the subjectivist, there is no ‘true’ or singular underlying probability distribution: each new piece of 

evidence gives rise to an updated probability distribution. The notion of a statistically independent 

set of identically-distributed trials therefore does not arise in subjectivist probability and statistics: 

the estimate of the underlying probability distribution is continually updated as the evidence from 

each new observation emerges, and so each new observation has a different subjective probability 

distribution. But assumptions of independence and identically distributed samples play a critical role 

in how objectivists are able to use sample data to make statistical inferences – don’t subjectivists 

need to make some similar types of assumptions about the nature of the sample data when 

updating probability distributions?  

The answer is yes, some form of assumption is necessary, but there is no logical constraint on what 

form of assumption is necessary (or appropriate). The simplest case is where the data can be 

considered as exchangeable. The concept of exchangeability can be loosely thought of as the 

subjectivist’s equivalent of the objectivist statistician’s assumption of independent, identically-

distributed trials. The exchangeability condition is met if the subjective probability conditional on 

observing r events in a sample of n observations is the same for all permutations of the order in 

which the r events arose (i.e. the sequence or path of the observations is irrelevant). De Finetti 

described this distinction between independence and exchangeability using an example of sampling 

marbles from an urn: 

“Extractions with return of the marble to the urn having a known composition (e.g. 7 white marbles 

and 3 black ones) are stochastically independent; if, on the other hand, the composition is not 

 
40 See De Finetti (1975), Chapter 3.2. 



known…it is clear that each piece of information on the results of a new extraction increases the 

probability assigned to the composition of the colour of the marble extracted. Independence thus 

does not exist: the correct translation of the nonsensical ‘constant but unknown probability’ is given 

by the notion of exchangeability. In these cases, later extractions are (not independent but) 

exchangeable in the sense that the probability does not vary for permutations e.g. every series of 9 

extractions (e.g. of 5 white and 4 black) has the same probability.”41  

Like the objectivist’s assumption of independent and identically-distributed, the subjectivist 

assumption of exchangeability may or may not be applicable to a given set of data. Moreover, it is 

arguably less clear when the exchangeability assumption is not appropriate. The contemporary 

philosopher of science and probability Donald Gillies (who has definite objectivist leanings) has 

argued that the only way to test if the exchangeability assumption is reasonable for a given set of 

data is to test if the data is objectively independent. He argues that the concept of exchangeability is 

consequently ‘parasitic on objective independence and therefore redundant’42. Nonetheless, if 

probability is defined subjectively rather than according to an objectivist theory, exchangeability is a 

fundamentally important concept. 

Updating subjective probabilities 

When armed with the exchangeability assumption, the updating of subjective probabilities to reflect 

new observational data is fairly straightforward. The updating process may be a lot less 

straightforward when new information is not of the form of well-defined events that meet the 

exchangeability criteria. All we can really say about this general situation is that it depends on the 

specifics of the case. Moreover, in the case of exchangeable data, the updating process makes no 

distinction between the two epistemological probability branches of subjective and logical 

probability – the subjectivists’ coherence constraint determines a unique way of updating 

probabilities in the presence of new exchangeable data, and this updating method is also the only 

one, in these conditions, consistent with the logical approach.  

The basic updating mechanism goes as far back as Bayes’ paper of 1764 in which Bayes’ Theorem 

was first set out. In mathematical terms, the standard rendering of Bayes’ Theorem is: 

  

𝑃(𝐴|𝐵) =
𝑃(𝐴)𝑃(𝐵|𝐴)

𝑃(𝐵)
 

Despite the controversy surrounding the use of Bayes’ Theorem, the formula itself is quite 

unremarkable and is easily derived from Kolmogorov’s axioms (which is one of the few things that 

objectivist and subjectivists can mutually accept). When the three probabilities on the right-hand 

side of the equation have known values, there is no logical ambiguity about the applicability of the 

formula. The objectivists’ objection is focused on how Bayes’ Theorem is applied to the problem of 

statistical inference, and in particular whether all three of these probabilities can be meaningfully 

quantified in that context. For now, let us merely note this is a topic of contention that we will 

return to in Chapter 1.3.  

The iterative process of updating a subjective probability for each new piece of exchangeable 

observational data is sometimes referred to as Bayesian conditioning (and in this context Bayes’ 

Theorem may sometimes be referred to as the Principle of Inverse Probability, a term introduced by 

Laplace). We start with a subjective probability of some event A, P(A), conditional on all currently 
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available information. We obtain new information, B. Bayes’ Theorem is then used to produce a 

posterior probability, P(A|B).  

The posterior distribution given n pieces of data becomes the prior distribution for the (n+1)th piece 

of data. That is: 

𝑃(𝐴|𝑒𝑛+1) =
𝑃(𝐴|𝑒𝑛)𝑃(𝑒𝑛+1|𝐴)

𝑃(𝑒𝑛+1)
 

This process can be iterated again with the next data observation to produce a new posterior 

distribution. And so on ad infinitum.  Importantly, as a greater volume of data is introduced, the 

posterior distribution converges on a result which is independent of the initial starting assumption 

for the prior distribution (assuming the evidence meets the exchangeability criteria described above 

by De Finetti; and providing the starting prior probability is not zero or one).  

Objectivists such as Donald Gillies have argued that, when applied to a time series of data, 

exchangeability and Bayesian conditioning may attach too much weight to older data. That is, the 

posterior probability may not change quickly enough in light of important new evidence. Gillies 

offers an example43. If the sun was observed to rise for one million days in a row and then did not 

rise today, the posterior probability produced for the sun rising tomorrow would be counter-

intuitively high when we assume that the million and one days of data is exchangeable. Whilst this 

criticism is doubtless reasonable, it must be noted that objective probability has a very similar 

failing: if we assume the million and one days of data are independent and identically-distributed, 

we would again infer the probability of the sun rising tomorrow is bizarrely high. Neither the 

objective nor subjective approaches offer an obvious solution or strategy for handling this (rather 

contrived) example. 

Whilst the posterior distribution produced by a very large volume of data does not strongly depend 

on the assumed size of the initial prior probability, it will be an important assumption in the context 

of smaller data sets. As we have seen above, subjective probability theory has little to say about how 

these initial or prior probabilities are generated, other than that they can be observed from 

hypothetical betting actions and will obey the basic axioms of probability when the betting is 

arbitrage-free (coherent). We will see in the next section how the logical approach to probability 

attempts to say more about the specification of these probabilities, especially in the condition of a 

total lack of information. 

Intersubjective probabilities  

So far, the discussion of subjective probabilities has considered the probabilities of an individual. 

What if multiple individuals have subjective probabilities for the same event. Interestingly, it was 

some half a century after the breakthrough work of Ramsay and De Finetti that someone (the 

Australian actuary, J.M. Ryder) pointed out that if different individuals used different subjective 

probabilities (as implied by their betting quotients), then this implied a third-party could arbitrage 

between these bets by selling the short-odds bet and buying the long-odds bet44. We saw how the 

arbitrage-free condition was fundamental to demonstrating that subjective probabilities could be 

made to satisfy the basic mathematical axioms of probability. Ryder pointed out that the arbitrage-

free condition also implied that the notion of subjective probabilities as completely individualistic 

 
43 Gillies (2000), p. 73. 
44 Ryder (1981). It may be of particular interest to the actuarial audience to note that the philosopher 
responsible for this breakthrough and the foundation of intersubjective probability was a Fellow of the 
Institute of Actuaries and a former Government Actuary of Australia. 



belief may be inadequate. Ryder held a strongly objectivist outlook, and he argued that this form of 

arbitrage-free condition meant the entire notion of determining subjective probabilities with regard 

to an individual’s betting quotients was not viable. However, some philosophers have suggested an 

alternative interpretation of Ryder’s arbitrage-free constraint: that it gives rise to intersubjective 

probabilities, where the subjective probabilities are essentially consensus group probabilities rather 

than entirely individual ones.  

The intersubjective approach gives subjective probability a social as well as psychological element, 

and the idea arguably further strengthens the link between subjective probability and the economics 

of risk and asset pricing – financial market prices are perhaps the most natural example of where we 

might attempt to infer intersubjective probabilities. Indeed, one argument in favour of the use of 

(inter)subjective probabilities implied by market prices is that the events that financial market prices 

are contingent on clearly do not have objective probabilities (in the sense that these events are not 

mass phenomena produced by repeatable events or recurring generating conditions). To the extent 

that probabilities are used at all in the consideration of such claims, these probabilities can only be 

(inter)subjective.  

Probability and Statistics: Objectivist and Subjectivist Perspectives 

Let us now take stock of where we have got to thus far by comparing and contrasting the 

fundamentally different outlooks of objective and subjective approaches to probability and statistics.  

Subjective probabilities, as degrees of belief, are fundamentally conditional on what is known to the 

given subject at a given point in time, i.e. on the evidence available to support belief in the truth of 

the statement in question. To the objectivist, on the other hand, a probability exists as a real, 

objective, ‘physical’ property of something. The probability does not vary as a function of an 

individual’s knowledge. Where the magnitude of the probability is unknown, sample observations 

can be used, under suitable assumptions, to infer estimates of this objectively true, constant but 

unknown quantity. This is the objectivists’ basic perspective on statistical inference.  

In objectivist statistics, the canonical technique for estimation of the parameters of a probability 

distribution from some (independent and identically distributed) sample data is maximum 

likelihood. This approach aims to identify the population probability parameters that attach the 

highest probability to the occurrence of the observed sample distribution. Its development is most 

strongly associated with the work of Sir Ronald Fisher in the early twentieth century, who 

demonstrated the inferential properties of maximum likelihood45. However, as a concept, it arguably 

goes as far back as Daniel Bernoulli’s writings of 177746. To take a simple example, suppose we know 

that a population has a normal distribution with a known variance but unknown mean. A sample of 

size n is observed from this population. It can be easily shown that the maximum likelihood estimate 

of the population mean is the arithmetic mean of the sample (assuming the sample is of 

independent and identically distributed trials). Note that the maximum likelihood method, and 

similar objective approaches to statistics, will assume a form of prior knowledge: that is, that the 

population from which the sample is taken is known to belong to some particular form or family of 

probability distributions or stochastic processes. It may be convenient to make mathematically 

tractable distributional assumptions, but of course, such assumptions may or may not be reasonable 

 
45 Over the course of his career Fisher produced an enormous volume of paper and books on statistical theory 
and practice, but for a good example of his foundational thinking on the method of maximum likelihood, see 
Fisher (1922). 
46 See Hacking (1965), p. 63-4. 



in specific circumstances. Note also that the required assumption is not merely that the population 

probability distribution is ‘probably’ of a given form, but that it is known to be. 

The other key plank of objectivist statistics is hypothesis testing. The general strategy here is to 

conjecture that a given state of the world is true (for example, a null hypothesis that the mean of a 

population probability distribution is zero), and then determine if the sample data evidence is strong 

enough to reject this assertion with a high degree of confidence. This is known as significance testing 

or hypothesis testing. Fisher was again highly influential in the development of the theory and 

practice of hypothesis testing, but he had notable rivals in others such as Neyman and Pearson47. 

Like any form of statistical inference, hypothesis testing is fallible. Two forms of error can arise: the 

error of rejecting a true hypothesis (Type I error); and the error of not rejecting a false hypothesis 

(Type II error; the ‘power’ of the test is defined as the probability of rejecting the hypothesis when it 

is false). The probability of a Type I error is controlled by the significance level of the test. The 

probability of the Type II error will generally decrease as the significance level (and the probability of 

Type I error) increases and vice versa (all else being equal). Under suitable conditions, the probability 

of the Type II will reduce asymptotically to zero as the sample size increases. 

From a subjectivist perspective, however, objective ‘physical’ probabilities do not exist. In this 

setting all probability essentially becomes statistics in the sense that a constant, unknown 

probability has no meaning: probability is defined by and is explicitly conditional on the (limited) 

available information (such as some sample data). Probability is therefore not a constant unknown 

but an epistemic property that is continually changing as new information arises. In subjectivist (or 

Bayesian, as it is more commonly referred to) statistics, the population probability distribution 

parameter(s) itself has a probability distribution which is updated to reflect new observations. A 

subjectivist approach to the simple statistics example given above of estimating the mean of a 

population normal distribution with known variance would assume a starting (prior) probability 

distribution for the mean of the distribution, and then update this distribution following 

observations to obtain a posterior distribution. The subjectivist’s estimate of the population mean 

would usually then be defined as the median or mean of the posterior distribution. In this example, 

given our earlier assumption that the data independent and identically distributed, it has the 

subjectivist property of exchangeability, and it can be easily shown that the posterior distribution 

will converge on the population mean as the sample size increases.   

The objectivist and subjectivist approaches to the statistical task of interval estimation also contrast. 

An objectivist approach will employ a confidence interval, which states that the true, constant but 

unknown population parameter is within a specific range with a given level of probability. The theory 

of confidence intervals was formally developed by Neyman and can be considered as the natural 

counterpart of hypothesis testing48. The ‘given level of probability’ referred to here has a frequentist 

interpretation in the sense that if the sampling procedure is repeated, with a new confidence 

interval produced each time, the true (constant) population parameter will appear within the 

calculated interval with a frequency that will tend towards the stated confidence level as the 

number of samples tends to infinity. As the size of the data sample increases, the confidence interval 

will narrow (under suitable conditions). A subjectivist would naturally use the posterior probability 

distribution to make interval estimates for the parameter (and in Bayesian statistics these are called 
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credibility intervals). Again, as the data sample size increases, the posterior distribution, and 

credibility interval, will narrow.49 

From this brief overview, it is apparent that objectivist and subjectivist approaches to statistical 

inference differ significantly in philosophical outlook, in the logic of the inferential process and in the 

jargon employed. The good news, however, is that for most standard types of problem, they tend to 

ultimately converge on the same or very similar answers! 

Next, we consider the third and final philosophical branch of probability definitions: the logical 

theory. 

1.3 Induction and the logical approach to probability 
The logical theory of probability, like the subjective theory, starts with the epistemological approach 

of defining probability as a measure of the degree of belief in the truth of a statement. The logical 

theory, like the subjective theory, therefore views probability as being fundamentally conditional on 

available knowledge. Logical theories of probability can be viewed as a special case of the subjective 

approach where the degree of belief is defined in a particular way: in subjective probability, the 

probability is inferred from an individual’s actions without making assumptions about the 

individual’s processes for arriving at the probability other than that they will avoid the possibility of 

being arbitraged (coherence). But in the logical approach a stronger assumption is made - the 

individual’s degree of belief is assumed to be that which is reasonable or rational to hold, given the 

information available. So, the logical approach aims to be more objective than subjective in the 

sense that it assumes that (in at least some cases) there is a unique and objectively-determined 

probability that is the result of a rational assessment of the evidence. Different individuals will 

therefore not hold different logical probabilities, given the same information, whereas in subjective 

probability theory the probability is only constrained by the assumption of coherence 

(intersubjective probability theory also implies individuals will not hold different subjective 

probabilities, which makes this distinction less clear-cut).  

Given the above, the logical probability approach naturally gives rise to the same prior / evidence / 

posterior updating structure that is present in subjective theories of probability. As was noted 

above, the two approaches do not differ in how to update prior beliefs when new, well-behaved (i.e. 

exchangeable) data is received. The Bayesian conditioning process described above for subjective 

probabilities similarly applies to logical probabilities. The starkest difference between the two 

approaches can be found in how prior probability distributions are specified. We will discuss this 

topic in some depth later in this section. 

On Induction 

Advocates of the logical approach such as John Maynard Keynes, Rudolf Carnap and Harold Jeffreys 

viewed logical probability as a form of inductive logic that could sit alongside traditional, deductive 

logic as part of a theory of knowledge. Keynes viewed the frequentist definition of probability as a 

small sub-set of logical probability: “The cases in which we can determine the logical value of a 

conclusion entirely on grounds of statistical frequency would seem to be extremely small in 

number.”50. Carnap drew a sharp distinction between logical and frequentist probabilities, referring 

to the former as ‘probability1’ and the latter as ‘probability2’51. Meanwhile, as will be discussed 

further below, Jeffreys rejected the frequentist definition of probability altogether. 

 
49 See Howson and Urbach (1993) for a fuller discussion of the Bayesian approach to statistical inference. 
50 Keynes (1921), p. 99. 
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To gain some appreciation of the logical perspective on probability, a brief diversion into the topic of 

induction and inductive knowledge will be helpful. In epistemology, the process of inferring 

knowledge from evidence can be considered to arise in two basic ways: by deduction and by 

induction. A deductive inference takes premises that are known (or assumed to be known by 

hypothesis or postulate) and applies laws of logic to arrive at a conclusion that is certain, given the 

truth of the premises (the conclusion is said to be logically entailed by the premises). 

Deductive logic classically takes the form of a syllogism. For example: 1 All actuaries know how to 

linearly extrapolate; 2 Craig is an actuary; Conclusion, Craig knows how to linearly extrapolate. 

Whilst seemingly logically straightforward, the syllogism has nonetheless generated its own 

literature of philosophical criticism. For example, Venn pointed out that if we knew that Craig was an 

actuary when we stated the syllogism, there really was no need to state both premises. Whereas, if 

we did not already know Craig was an actuary when we established the first premise, then how 

could we be so confident that it was indeed true?52 

In an inductive inference, the conclusion is not logically entailed by the premises, but the premises 

(if true) may nonetheless provide positive (but inconclusive) supporting evidence for the conclusion. 

They might even be said to make the conclusion probable (or at least more probable than if the 

premises were false). Venn’s criticism highlights the path from a syllogism to an inductive inference. 

For example: 1 I have observed some actuaries (but not Craig) and all of those observed actuaries 

can linearly extrapolate; 2 It is reasonable to expect that all actuaries (including the unobserved 

ones) can linearly extrapolate; 3 Craig is an actuary; Conclusion, It is reasonable to infer Craig 

probably knows how to linearly extrapolate.  

These two forms of argument are clearly fundamentally different. The deductive syllogism takes a 

universal generalisation as known, and this then enables definite statements to be made about 

specific cases. The inductive argument takes some specific cases (such as a finite set of observations) 

as known and then infers a universal generalisation which then allows statements to be made about 

other specific cases not in the set of observations. Inductive inference inevitably results in a form of 

knowledge that is fallible – the truth of the conclusion is not logically certain, but is contingent on 

the reliability of the universal generalisation that has been hypothesised from some limited initial 

information such as a finite set of prior observations. Epistemologists generally regard inductive 

inferences as a legitimate form of justified knowledge, with the general caveat that the greater and 

more representative the set of prior observations, the greater the justification for that knowledge. 

Logical probability is essentially concerned with producing a mathematical apparatus that can 

provide a quantification of this degree of justification. 

The inescapable fallibility of inductive inference was brought into sharp relief by the Edinburgh 

philosopher David Hume in the mid-18th century53. Hume’s arguments highlighted the critical point 

that an inductive inference had to rely on more than just past observational data. That is, it also 

required some form of non-empirical assumption that gives a reason why the past (or observed) data 

is relevant for predicting behaviour in the future (or in the unobserved).  

In general terms, this assumption can be described as assuming some form of uniformity of nature 

across time and space – such an assumption provides the explicit logical basis for the use of prior 

observations in inferring generalisations that are applied to similar non-observed events. The need 

for this assumption leads to a difficulty. How can this uniformity assumption be justified? The only 
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basis for its justification would appear to be that it has been found to usually work in other 

inferences. But this is merely an inductive inference – a finite set of observations of inductive 

inference working well in the past is used to infer that inductive inference will generally work in the 

future - and so leads to a circularity. The satisfactory justification of inductive inference surely 

cannot be grounded on an inductive inference. In philosophy, this lack of a rigorous logical 

justification for induction is known as the problem of induction. As Bertrand Russell succinctly 

concluded in his famous essay, On Induction, “Thus all knowledge which, on the basis of experience 

tells us something about what is not experienced, is based upon a belief which experience can 

neither confirm nor confute”54. 

And yet, in real life, we use inductive inference all the time. Deductive knowledge is limited to the 

domains of maths and logic. All of our other knowledge – including scientific knowledge - relies on 

limited experience and some form of inductive inference from that experience. But empirical 

observations, in and of themselves, have no informational content irrespective of their number 

unless accompanied by a non-empirical assumption of uniformity that is difficult or impossible to 

empirically justify.  

Statistical inference can be viewed as a special, quantitative case of inductive inference. Statistical 

methods will make the assumption of a form of uniformity of nature explicit – by assuming that the 

sample of past observations are independent and identically distributed from a known distribution 

which also applies to unobserved population (if an objectivist). Without such assumptions, the 

inference from data has no logical basis. 

Since the time of Hume, philosophers have invested much energy in attempting to solve the 

problem of induction – that is, to produce a philosophical justification for why empirical observation 

is informative without recourse to a non-empirical and philosophically unjustified assumption55. 

Much of this work hinged on linguistic contortions – for example, justified, probable belief could 

simply be defined as the fallible knowledge resulting from inductive inference under the assumption 

of a uniformity of nature. Some philosophers also argued that the problem of induction was a 

natural and inevitable feature of induction – inductive inference inevitably could not be proven to be 

correct, as that would make it deduction rather than induction. Another argument for the 

philosophical justification of induction was that it would work better than any other method when 

the assumption of a uniformity of nature held true, and that no inferential method could succeed 

when the assumption did not hold. None of these approaches ‘solved’ the problem as stated and 

today the problem of induction is generally regarded by philosophers as insoluble. 

Despite a lack of philosophical justification for induction, inductive inference is still generally 

regarded as capable of producing knowledge – a particular kind of knowledge that is fallible, tenuous 

and subject to revision, which may or may not be true, but that nonetheless is to some extent 

justified and reasonable. It may be called probable knowledge (and this would seem to be a very 

important category of human knowledge, as it pertains to virtually all scientific knowledge. The topic 

of the scientific method as a formal model of the development of probable knowledge is discussed 

further in Chapter 2). This notion of probable knowledge gives rise to the use of probability as a 

measure of its strength - the degree of rational belief in the truth of a statement. This is the starting 

point for the logical theory of probability. 
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A Swan-based Example of the Problem of Induction 

The essence of logical probability and its relationship to inductive inference can be illustrated with a 

very simple example. In time-honoured tradition, let us consider the colour of swans in our inductive 

illustration56. We begin with a hypothesis that conforms to our observational experience to date: ‘All 

swans are white’. Let’s call this hypothesis A. Suppose there is a swan in the garden and we are 

about to look at it in such a way as to correctly determine its colour. We will denote the colour of 

this swan by a binary term B, where B = true if the swan in the garden is white, and B = false if the 

swan in the garden is any other colour (black, blue, pink, yellow, etc.). Before we set our sights on 

the swan in the garden, we attach some probability to the truth of hypothesis A, which we will 

denote as P(A). Self-evidently, if B is false, then A is false. That is: 

𝑃(𝐴|𝐵 = 𝑓𝑎𝑙𝑠𝑒)  = 0 

Inductive inference is concerned with how we update P(A) in the event that B = true. That is, what is 

the relation between P(A) and P(A|B = true)?  

A simple application of Bayes’ Theorem tells us: 

𝑃(𝐴|𝐵 = 𝑡𝑟𝑢𝑒)  =
𝑃(𝐴)𝑃(𝐵 = 𝑡𝑟𝑢𝑒 |𝐴)

𝑃(𝐵)
 

Clearly, P (B = true | A) = 1. That is, if it is true all swans are white, we can be certain that the swan in 

the garden is white. This equation therefore simplifies to: 

𝑃(𝐴|𝐵 = 𝑡𝑟𝑢𝑒)  =
𝑃(𝐴)

𝑃(𝐵)
 

Noting that 𝑃(𝐵) ≤ 1, we can immediately obtain the inequality: 

𝑃(𝐴|𝐵 = 𝑡𝑟𝑢𝑒)  ≥ 𝑃(𝐴) 

This inequality offers an intuitive result – a positive specific observation in support of a general 

hypothesis will tend to increase the probability we attach to the generalisation being true. We might 

envisage that, with increasing observations of such positive instances, the conditional probability will 

tend to one. But this depends on valid assessments of P(A) and P(B). P(A), the prior probability, can 

be updated iteratively by Bayesian conditioning – if we see a new swan in the garden every day, then 

today’s posterior is tomorrow’s prior. Providing our ‘initial’ prior for A is non-zero, P(A) will tend to 

one if P(B) is less than one. But what is P(B)?  

We may obtain some further insight into P(B) by writing it as: 

  

𝑃(𝐵) = 𝑃(𝐵|𝐴 = 𝑡𝑟𝑢𝑒)𝑃(𝐴) + 𝑃(𝐵|𝐴 = 𝑓𝑎𝑙𝑠𝑒)(1 − 𝑃(𝐴)) 

 
56 Nassim Nicholas Taleb made swan colour highly fashionable in popular inductive discourse in the early 
twenty-first century. But the colour of swans has a significantly longer history in philosophical literature. The 
black swan was used by Bertrand Russell in his classic essay on induction in his book Problems of Philosophy 
published a century earlier. It also makes an appearance in R.B. Braithwaite’s Scientific Explanation of 1953 
and T.W. Hutchison’s The Significance and Basic Postulates of Economic Theory, first published in 1938. Its 
original usage apparently lies with John Stuart Mill, the mid-nineteenth century English philosopher, economist 
and general polymath (Blaug (1980), p. 12). British actuaries can note with pride that our own Professor David 
Wilkie made his contribution to this esteemed tradition when he noted that Australian black swans were, in 
fact, partly white (Pemberton (1999), p. 192). Wilkie’s observation is indicative of his general aversion to 
excessive philosophical navel-gazing. 



Noting, as above, P(B|A) = 1 when A is true, we then obtain a new expression for the conditional 

probability of A: 

𝑃(𝐴|𝐵 = 𝑡𝑟𝑢𝑒)  =
𝑃(𝐴)

𝑃(𝐴) + 𝑃(𝐵|𝐴 = 𝑓𝑎𝑙𝑠𝑒)(1 − 𝑃(𝐴))
 

This equation shows that the updating of the conditional probability relies crucially on the 

probability of observing a white swan when the hypothesis that all swans are white is false. A 

moment’s reflection tells us why: if, for example, we knew there was no possibility of observing a 

white swan when the hypothesis is false (because, say, there was only one alternative hypothesis, 

and it was that, as of today, all swans are black), then we could deductively conclude that the 

observation of a white swan shows that the white swan hypothesis is certainly true (as, in this case, 

P(B|A=false) = 0 and P(A|B) = 1). Consider the other pathological case, where we are sure we will 

observe a white swan in the garden, even if the hypothesis is false. This could arise, say, because we 

already know all swans in Edinburgh are white, but we do not know what colour the swans are in 

other less explored parts of the world, such as Glasgow. In this case, P(B|A = false) = 1, and P(A|B) = 

P(A). This is again intuitive – in this case, observations of the colour of swans in Edinburgh provides 

us with no new information about the truth of the universal hypothesis, and the conditional 

probability is therefore unchanged by the observation. 

In our general example, we do not have sufficient information to make the assertion that P(B|A= 

false) is zero or one. We cannot really say anything about P(B|A = false) from the information we 

have. In the absence of a rationale for ascribing a particular value to P(B|A = false), all we can 

logically conclude is that observing a white swan does not reduce the probability we attach to the 

probability that all swans are white. The vacuity of this conclusion is striking. It is a demonstration of 

Hume’s problem of induction in action. It shows that the problem of induction is not just a 

philosopher’s idle indulgence.  

This example demonstrates, with the use of Bayes Theorem, that inference by mere positive 

enumeration, without any extra-evidential assumptions or knowledge, is indeed epistemically 

worthless, just as Hume argued. 

Developing a Logical Definition of Probability 

The philosopher’s problem of induction, as well as the sheer ambition of the logical probability 

concept, suggests that finding a general way of quantitatively defining the rational measure of the 

probability of truth of a statement from a given set of (quantitative and qualitative) evidence is likely 

to be highly challenging. This scepticism has long been present amongst philosophers who advocate 

an objective approach to probability. For example, Venn’s Logic of Chance includes the much-quoted 

passage: 

“In every case in which we extend our inferences by induction or analogy…we have a result of which 

we can scarcely feel as certain as of the premises from which it was obtained. In all these cases then 

we are conscious of varying quantities of belief, but are the laws according to which the belief is 

produced and varied the same? If they cannot be reduced to one harmonious scheme, if in fact they 

can at best be brought about to nothing but a number of different schemes, each with its own body 

of laws and rules, then it is vain to endeavour to force them into one science.”57 

Nonetheless, some illustrious philosophers of the first half of the 20th century such as John Maynard 

Keynes, Harold Jeffreys and some of the logical positivists of the Vienna Circle such as Rudolf Carnap 
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pursued the idea that a given body of evidence could be used to generate a rational quantitative 

degree of belief in a given hypothesis. Below we consider the work of Keynes and Jeffreys, in 

particular. Keynes and Jeffreys were both Cambridge scholars with philosophical interests but 

vocations outside of academic philosophy (and indeed probability). Keynes wrote on the theory of 

probability in the earlier part of his career, before going on to become one of the most influential 

economists of the twentieth century. Jeffreys was a leading professor of geophysics and astronomy. 

Keynes’ 1921 Treatise on Probability set out his theory of probability as a system of inductive logic 

that could be considered as a generalisation of deductive knowledge. To Keynes, the theory of 

probability was the theory of rational inductive inference from limited empirical observation to 

partial or probable knowledge:  

“That part of our knowledge which we obtain directly, supplies the premises of that part which we 

obtain by argument. From these premises we seek to justify some degree of rational belief about all 

sorts of conclusions. We do this by perceiving certain logical relations between the premises and the 

conclusions. The kind of rational belief which we infer in this manner is termed probable, and the 

logical relations, by the perception of which it is obtained, we term relations of probability.”58 

Keynes’ definition of epistemic probability was based explicitly on an objective rationality: 

“A proposition is not probable because we think it so. Once the facts are given which determine our 

knowledge, what is probable or improbable in these circumstances has been fixed objectively, and is 

independent of our opinion. The Theory of Probability is logical, therefore, because it is concerned 

with the degree of belief which it is rational to entertain in given conditions, and not merely with the 

actual beliefs of particular individuals, which may or may not be rational.”59  

As was noted above, this epistemic perspective on probability as a degree of belief was not new 

when Keynes was writing in the 1920s. It had formed a fundamental part of thinking on probability 

since the Enlightenment era and the ideas on probability that emerged then from Laplace and 

others. Indeed, some such as Carnap have argued that the competing frequentist definition of 

probability did not emerge until the 1840s, and thus probability was meant in an entirely epistemic 

sense prior to then60. 

Philosophically-minded mathematicians of the Victorian era also attempted to specifically develop 

the epistemic approach to probability, with their own nuance. For example, like Keynes, Augustus De 

Morgan also considered how probability could be considered as an inductive extension to deductive 

logic. But his departure from deduction arose not through consideration of an argument from known 

premises that did not logically entail a conclusion (as Keynes describes in the above quotation), but 

instead by assuming the premises of the argument were not known with certainty. Thus in 1847 De 

Morgan defined epistemic probability as “the study of the effect which partial belief of the premises 

produces with respect to the conclusion” 61. This definition of epistemic probability was not 

significantly developed further, but it is interesting to note that it seems a representative logical 

depiction of scientific knowledge: that is, scientific theories are usually deductive systems developed 

from premises whose depiction of empirical reality is not certainly true. This topic will be discussed 

further in Chapter 2. 
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Sir Harold Jeffreys’ Theory of Probability was first published in 1939 and in it he, like Keynes, set out 

an approach that embraced probability as the epistemic currency of inductive logic (Jeffreys also 

wrote another book, Scientific Inference, first published in 1931, which was also significantly 

concerned with probabilistic thinking). To Jeffreys, a probability was the ‘reasonable degree of 

confidence that is attached to a given proposition in the presence of a specified set of data’62. 

Jeffreys, again like Keynes, argued that this probability would not be a subjective quantity that was 

at the mercy of the vagaries of an individual’s opinion, but would be rationally and uniquely 

determined: “On a given set of data p we say that a proposition q has in relation to these data one 

and only one probability. If any person assigns a different probability, he is simply wrong.”63 

Whilst Keynes and Jeffreys shared a common vision of probability as the natural calculus of inductive 

logic, and also shared a scepticism of the frequency theory that provided the standard definition of 

probability in their time, their approaches differed in some important respects. Most crucially, 

Jeffreys took the comparability and orderability of the probabilities of different propositions as the 

first axiom of his probability theory64. In essence, he assumed that a unique numerical value could be 

logically identified for the probability of anything, conditional on anything. The theorems of the late 

20th century American physicist and logical probabilist Richard Cox65 showed that, if probabilities of 

propositions can be represented by real numbers (and hence are comparable and orderable as 

assumed by Jeffreys), then there must exist a unique set of inductive rules. Thus, if we can accept 

this axiom, an exciting world of inductive logic appears before us. 

The property, however, that any probability can always be uniquely represented by a real number 

can only be an axiom or postulate of a system rather than a property that is logically derivable from 

more fundamental and self-evident properties. It is the crucial and essential premise necessary to 

enable a numerical system of inductive logic. And it is a premise that many philosophers have not 

been willing to accept. Keynes refused to make this assumption axiomatic of his system of 

probability. Instead he argued not all probabilities would be quantifiable. There would exist a subset 

of probabilities for which comparable statements may be possible, without quantifying either 

probability statement. For example, he argued it may be possible to say that a scientific hypothesis 

conditional on evidence x+y is more probable than the scientific hypothesis when only given 

evidence y. But it may not possible to say what either of these probabilities are. And then, he further 

argued, there would be some sets of propositions for which their probabilities were not only 

unquantifiable, but also incapable of comparison or ordering:  

“No exercise of the practical judgment is possible, by which a numerical value can actually be given 

to the probability of every argument. So far from our being able to measure them, it is not even 

clear that we are always able to place them in an order of magnitude.”66  

The Principal of Indifference and Uninformed Priors  

Keynes’ and Jeffrey’s inductive analyses each resolve into a form that would be familiar to Bayes and 

Laplace and modern subjectivists: a prior probability is combined with the results of a set of 

observations to obtain a posterior probability. As noted above, the special feature of the logical 

approach is that the prior distribution is not subjective. Rather, it is derived rationally. Today’s prior 

is yesterday’s posterior. So the ultimate logical starting point for the initial specification of the prior 
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is its value in the case of total ignorance. A fundamental requirement of the logical approach is 

therefore to show how to rationally determine the prior distribution in the case of the total absence 

of any information about the proposition in question. This might at first glance sound like the 

simplest of all possible cases, with a self-evident answer, but it has been a crucial source of 

controversy in the development of the logical approach to probability. 

The historical answer to the question of how to rationally specify the prior distribution in the 

absence of any information whatsoever was developed and applied independently by Bayes and 

Laplace during the final decades of the 18th century. They both asserted67 that, in this case, the prior 

distribution should be the uniform distribution – in the absence of any information, all possible 

values are equally probable. Laplace called this the Principal of Insufficient Reason. Keynes re-named 

it the Principle of Indifference (a terminology which has generally stuck since) and defined it thus: 

“The Principal of Indifference asserts that if there is no known reason for predicating of our subject 

one rather than another of several alternatives, then relatively to such knowledge the assertions of 

each these alternatives have an equal probability.”68 

In the logical approach of Keynes or Jeffreys, the Principle of Indifference is taken to be axiomatic 

rather than logically-derived from more fundamental assumptions. The Principle was heavily 

employed by Laplace in his work on probability during the early nineteenth century (and was the 

basis for his (now somewhat notorious) Law of Succession). The Principle stood unchallenged for 

several decades before starting to attract some criticism in the mid-nineteenth century. The earliest 

critique is thought to have been produced by Leslie Ellis in 1842. The critique published by George 

Boole, the English mathematician and philosopher, was more expansive and influential. In 1854, 

Boole wrote of the Principle: 

“It has been said that the principle involved in…is that of the equal distribution of our knowledge, or 

rather of our ignorance – the assigning to different states of things which we know nothing, and 

upon the very ground that we know nothing, equal degrees of probability. I apprehend, however, 

that this is an arbitrary method of procedure.”69 

Boole’s view of the Principle of Indifference has been shared by many other leading philosophically-

minded statisticians and economists of the twentieth century. To give a couple of diverse examples, 

Sir John Hicks, the Nobel prize-winning British economist and the frequency theorist Ludwig Von 

Mises have argued (separately), like Boole, that complete ignorance does not imply equal 

probabilities should be attached to the possible outcomes; rather, it simply means that their 

probabilities are not measurable70.  

As well as having a disputed logical basis, the Principle of Indifference can also be shown to produce 

paradoxes that arguably highlight the arbitrary nature of the attempt at equating ignorance with 

equiprobability. Keynes’ Treatise provides one of the most extensive discussions of these paradoxes 

and attempts at their resolution. 

The general form of the classic paradox of the Principle of Indifference exploits the arbitrary nature 

of the unit of measurement that the Principle is applied to. To take Keynes’ example, suppose we 

 
67 Bayes may actually have been somewhat reticent in making this assertion. There is some historical 
speculation that it was this reticence that delayed the publication of Bayes’ paper until after his death, when 
his friend Richard Price received Bayes’ draft and immediately saw its potential value in inductive inference. 
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have a quantity of substance of a known mass (say, of value 1). All we know about its volume is that 

it must be somewhere between 1 and 3. The Principle of Indifference would tell us that we should 

therefore attach equal probability to the volume of the substance being between 1 and 2 and it 

being between 2 and 3. Now, if we know its volume is between 1 and 3, we also know its density 

(mass / volume) is between 1 and 1/3. We could choose to directly apply the Principle to the density 

instead of the volume (why not?). The Principle tells us that it is as likely that the density is between 

1/3 and 2/3 as it is between 2/3 and 1. But the median volume (2) and the median density (2/3) are 

not mutually consistent – the density is ½ when the volume is at its median size, not 2/3; and the 

volume is 3/2 when the density is at its median size, not 2. What size of volume is consistent with 

our knowledge that the mass is 1 and the volume is somewhere, anywhere, between 1 and 3? One 

approach (prior distribution for volume is uniformly distributed) says 2 and the other approach (prior 

distribution for density is uniformly distributed) says 3/2. And the choice of which assumption to 

make appears to be completely arbitrary. Moreover, this form of argument can be applied to the use 

of the Principle of Indifference in the case of any continuously-distributed variables (for example, 

instead of mass, volume and density, we could equally work with distance, speed and time).  

Keynes made attempts to resolve the paradox of the Principle of Indifference, chiefly by focusing on 

the concept of divisibility, but his efforts were never widely accepted. A few years after Keynes’ 

Treatise, Von Mises was somewhat dismissive of Keynes’ efforts to solve these paradoxes, and 

expressed the same view as Boole 75 years earlier and Hicks 50 years later when he wrote: ‘It does 

not occur to him [Keynes] to draw the simple conclusion that if we nothing about a thing, we cannot 

say anything about its probability’.71 

Given the philosophical angst generated by the Principle of Indifference, Jeffreys was notably 

sanguine about its use. He believed it was a fundamental and natural outcome of his theory of 

probability: “When reasonable degree of belief is taken as the fundamental notion, the rule [the 

Principle of Indifference] is immediate….to say that the probabilities are equal is a precise way of 

saying we have no ground for choosing between the alternatives…it is merely the formal way of 

expressing ignorance.”72  

Jeffreys argued that the above paradox of the Principle of Indifference that arises with non-linear 

transformations of continuous variables can be addressed by subtly but fundamentally altering the 

interpretation of the Principle. He argued that, rather than assuming the Principle implies the 

‘uninformed’ prior distribution must be a uniform distribution, instead it implies a functional form 

for the uninformed prior that leaves the probabilities unchanged by these changes of variable.  

So, for continuous variables whose value must be positive, if we assume the uninformed prior 

distribution is a uniform distribution for the variable’s logarithm, then the prior is invariant to the 

reciprocal transformation that occurs between volume and density (or, say, distance and speed), and 

indeed any power transformation. In the above example, this makes the median of the prior 

distribution for the volume the square root of 3 (approximately 1.73) instead of 2 or 3/2 as per 

above; and the prior median under this form of uninformed prior for the density is the reciprocal of 

the square root of 3 (approximately 0.577) instead of ½ or 2/3 – consistency has, by design, been 

achieved. Jaynes argued that this result is an example of a more general approach to specifying well-

behaved uninformative priors: 

 
71 Von Mises (1928), p. 75. 
72 Jeffreys (1961), p. 33, 34. 



“If we merely specify ‘complete initial ignorance’, we cannot hope to obtain any definite prior 

distribution, because such a statement is too vague to define any mathematically well-posed 

problem. We are defining this state of knowledge far more precisely if we can specify a set of 

operations which we recognise as transforming the problem into an equivalent one. Having found 

such a set of operations, the basic desideratum of consistency then places nontrivial restrictions on 

the form of the prior.”73 

This approach seems capable of delivering a logical solution to the paradox, albeit only by requiring 

careful identification of the transformations in which the prior should be invariant in order to 

properly reflect the circumstances left unspecified in the particular problem (and under the 

assumption that all probabilities are orderable and comparable). The invariance principle seems a 

compelling strategy to resolving the paradoxes of the Principle of Indifference. But its implications 

are not entirely intuitive – if we know nothing about the volume of an object other than that it is 

somewhere between 1 and 3, is the square root of 3 really the natural starting estimate for it? In this 

example, the introduction of the density variable together with the invariance requirement implies a 

unique solution for the uninformed prior. But why has this happened? After all, in the example we 

do not know anything whatsoever about the density that is not already fully expressed by what is 

known about the volume. Why is density more important than some other arbitrary non-linear 

function of volume that we could instead require to meet the invariance property? Is it because we 

regard density as a ‘real thing’, of equivalent status to volume in some ontological sense? The 

invariant strategy of assuming the logarithm of the variable is uniformly distributed makes the 

distribution invariant to any power transformation of the variable. But it is mathematically 

impossible to specify a form of prior that is invariant to every possible choice of transformation.  

These types of question raise interesting mathematical problems for which better solutions may 

emerge. But, as ever with inductive inference, the fundamental contention is a logical one, and these 

questions have perhaps not yet been sufficiently explored by philosophers. Today, despite the 

support of Jeffrey’s invariance principle from some notable modern quarters such as Jaynes, many 

philosophers still regard the Principle as, at best, a heuristic, and not as a robust starting point for a 

logical theory of probable knowledge.  

More generally, the overall limited success in developing clear inductive rules (beyond the product 

and sum rules of basic probability theory) for the rational quantification of partial belief across a 

range of forms of evidence means that the logical theory of probability is not universally regarded as 

a viable philosophical or practical basis for a theory of probability. Work on the logical theory of 

probability has arguably failed to generate a set of practically useful general rules of rational 

inference – Keynes’ “certain logical relations” - that can produce numerical quantities or degrees of 

rational belief for a broad class of inductive problems. The logical framework provides conceptual 

directional relationships and limits, but these generally remain far removed from the objective 

determination of numerical probabilities in the ‘real-world’. It was this perceived failure in the work 

on logical probability of Keynes and the logical positivist school that provided the impetus for the 

development of subjective probability in the 1920s and 1930s. 

The uniform prior distribution, however, is still widely used in subjectivist probability methods and 

arguably with some success. The logical theory needs some form of the Principle of Indifference as a 

logically robust postulate in order to lay claim to a measure of rational belief. Subjectivists need 

make no such claim of rationality for their probabilities or their more implicit use of the Principle – if 
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the observation of an individual’s betting requirements implies a uniform distribution, so be it. To De 

Finetti, arguments for and against the Principle were ‘meaningless and metaphysical in character’74.  

Nonetheless, in the 21st century, Bayesian methods have experienced a particular form of 

resurgence in scientific data analysis, and this resurgence is notable for abandoning the use of 

subjective priors and replacing it with the use of some form of uninformed or objective (as opposed 

to subjective) prior. The invariant approach pioneered by Jeffreys discussed above is one example of 

this approach. But a more popular contemporary approach is the use of conjugate priors. The basic 

idea of a conjugate prior distribution is that is made uninformed by making it consistent with the 

observational data. For example, the prior distribution may be chosen to reflect the information 

contained in some pre-existing hypothetical data sample, and it might be assumed that this 

hypothetical prior data sample has the same mean as the mean of the sample data set in 

consideration. This seems very far away from the original logic of subjective probability – after all, 

here, the prior distribution is being set with reference to the data that it is supposed to be prior to! 

But the uninformed prior, and the conjugate prior approach to setting it, can provide a powerful 

machinery of logical Bayesian inference that fits the 21st century environment of computation-heavy, 

assumption-light approaches to inference and prediction75. 

1.4 Some final thoughts 
This brief survey of philosophical thought on probability highlights that ‘probability’ can be intended 

to mean profoundly different things, both to probability theorists and those applying statistical 

methods in their own fields. 

To the objectivist, probability has a narrow and mathematically precise definition that relates to 

mass phenomena that can be repeatedly observed. The objectivist considers probability as a natural 

part of the domain of the physical sciences. Objectivists such as Venn recognised that this strict form 

of definition means that there may be a very limited field of empirical phenomena for which 

objective probabilities exist. But an objectivist would tend to argue that there is no point in 

attempting to apply a mathematical probabilistic framework to phenomena where the objective 

requirements (particularly of repeatability and, hence, in principle, testability) cannot be met.  

The objective approach is based on the idea of probability as the frequency at which mass 

repeatable physical phenomena occur. The epistemological idea of probability as a degree of belief 

or measure of partial knowledge has a distinctly different starting point. Whether taking a subjective 

or logical approach to epistemic probability, perhaps the most fundamental question that arises 

therein is when and why it is reasonable to define a specific numerical probability for the degree of 

belief, and in what sense such a number can meaningfully exist. The question of how it is to be 

calculated then follows.  

Historically, the logical approach arguably failed to provide sufficiently convincing answers to these 

questions, and the subjectivist solution that chronologically followed in the 1930s was to observe the 

degrees of belief implied by people’s actions rather than attempt to logically determine what their 

rational belief ought to be. The subjective approach was given significant mathematical rigour by the 

Ramsay-De Finetti theorem, which showed that a very basic rationality constraint (a no-arbitrage 

condition for the bets that a given individual is willing to make and offer, which is called statistical 

coherence in probability theory) would result in subjective probabilities meeting the standard 

mathematical axioms of probability theory. But even the most ardent subjectivists have recognised 
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that ‘real-life’ probabilities of uncertain events may be beyond the abstract machinery of coherence 

and exchangeability. To quote De Finetti,’[worked examples of quantitative updating of subjective 

probabilities] are useful in practice, but only as simplified representations of more complicated 

situations which themselves cannot be represented straghtforwardly’76. 

Whilst there is some debate about when the historical distinction between objective and epistemic 

probabilities fully emerged, there has been at least some epistemological aspect to probabilities 

since Bayes’ paper of 1763 (and the approach was developed and more widely disseminated by the 

probability work of Laplace at the start of the 19th century). This established the prior / evidence / 

posterior structure of inductive inference. There has been an explicitly objectivist train of thought in 

probability theory since at least the time of George Boole’s 1854 book An Investigation into the Laws 

of Thought. This school of thought has argued that there are many situations where there is no 

rigorous logical basis for assuming a prior probability of a given specific numerical quantity. In such 

cases, the updated posterior probability must always contain an arbitrary constant (the prior 

probability). Boole argued that a lack of intellectual clarity or honesty about this could over-state the 

degree of precision and the quality of knowledge that we can possess about an uncertain world. He 

protested against “[numerical probabilities’] intrusion into realms in which conjecture is the only 

basis of inference.”77 

Boole’s argument, carried forward over the years by Venn, Fisher and many others, perhaps remains 

the fundamental protest of the objectivist against the subjectivist’s approach to probability: that it is 

a futile attempt to measure the immeasurable, and that conducting our affairs under the illusion 

that we have obtained a form of knowledge that is stronger than it really is can be a dangerous 

error. 

Whilst objectivist and subjectivist perspectives on the meaning of probability may appear 

irreconcilably at odds, many leading philosophers and scientists over the last one hundred years or 

so have advocated a pluralist view which asserts that these different definitions of probability may 

apply in distinct domains. Advocates of this approach include a diverse set of intellectual luminaries 

such as Henri Poincare78, Frank Ramsay, Sir John Hicks79, Rudolf Carnap80, Ian Hacking81 and Donald 

Gillies82. This approach recognises that the word ‘probability’ can simply be used to mean different 

things in different places. It is also notable that the surge in popularity of Bayesian methods of 

recent decades has been mainly characterised by the use of methods that use ‘uninformative’ priors. 

The idea of using priors to reflect qualitative subjective information has been largely abandoned in 

today’s data science algorithms. Instead, approaches such as empirical and objective Bayesian 

methods combine both frequentist and logical elements. 

So perhaps we can opt to recognise that there will be some situations where objective probabilities 

are natural (for example, in describing the behaviour of seemingly irreducibly statistical physical 

phenomena such as the radioactive decay of uranium isotopes) whilst simultaneously recognising 

that there other situations where (inter)subjective or logical probabilities are applicable (for 
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example, in the probabilistic evaluation of unique, singular phenomena, such as the behaviour of 

next year’s inflation rate).  

Amongst all this philosophical debate, one area of consensus appears to be identifiable amongst 

objectivists from Venn to Popper and subjectivists such as De Finetti: the strict demands of the 

objective definitions of probability mean that objective probability should have little applicability in 

the social sciences (objectivists such as Venn and Popper argued that social sciences are inherently 

non-stationary, rendering objective probability inapplicable; whereas subjectivists such as De Finetti 

argued objective probability is inapplicable everywhere). Yet objective probability theory (and its 

statistical inferential techniques) are applied all the time across a range of social sciences, including a 

range of modelling fields (financial and mortality) in actuarial science (though Bayesian methods 

have emerged as significant alternative statistical approaches in social science fields such as 

econometrics since the early 1970s83). Moreover, if the reason for rejecting the use of objective 

probability in the social sciences is because empirical data in the social sciences tends to be non-

stationary and not necessarily independent, then this may also preclude the application of many 

standard subjective probability modelling techniques – recall that Bayesian conditioning depends on 

the sample data having the exchangeability property, and that this in turn is equivalent to objective 

independence. No matter how we define our concept of probability, statistical forms of inference 

will depend on observations that are, in some sense, well-behaved and representative of the 

unobserved. The problem of induction otherwise has no solution. We cannot learn from past 

experience unless there is reason to believe the experience will have some well-understood relation 

to the future. We will return to this topic in the later chapter dedicated to probability and 

methodology in the social sciences. 

Before we tackle the special ambiguities of the social sciences, first we will consider what the above 

discussion of probability and inference means for methodology in the natural sciences. In particular, 

can probability theory be usefully employed to measure the degree of belief in a scientific 

hypothesis? This is a question that will be considered as part of a broader survey of the philosophy 

of the scientific method in Chapter 2.  
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2. Probability and methodology in the natural sciences 
“Probability is not the subject-matter of a branch of science; science is a branch of the subject-

matter of probability. To ignore probability is to ignore the problem of scientific inference and to 

deprive science of its chief reason for existence.” Sir Harold Jeffreys, Scientific Inference (3rd 

edition), p.219, 1937. 

In antiquity, science was mainly concerned with the development of certain knowledge by the logical 

deduction of true statements from premises that were taken to be self-evidently true. Euclidean 

geometry, which derived an impressive array of mathematical results from only a handful of axioms, 

is the canonical example. In this setting, empirical observation merely plays the role of confirming 

knowledge that has already been deductively proven. 

This view of science was radically altered during the 200 or so-year period from the mid-16th century 

to late-18th century that spanned the scientific revolution and the philosophical developments of the 

Enlightenment. Francis Bacon’s writings on an empirically-based scientific method and Hume’s work 

on causation and the problem of induction were major contributions, amongst many others, that 

helped to provide the basis for the development of the modern scientific method and its 

philosophical study. The scientific method that has been developed and implemented over the past 

300 years has delivered staggering progress and success in the fields of the natural sciences. 

Today, science is concerned with describing empirical observations in a way that permits wider and 

simpler generalisations about the behaviour of nature. Such generalisations can deliver accurate 

predictions about the behaviour of future (or otherwise unobserved) instances of phenomena. This 

basic statement suggests that the challenge of building scientific knowledge is fundamentally one of 

inductive inference – that is, of using knowledge of the observed to infer properties or behaviours of 

the unobserved. The problem of induction tells us that inductive inference requires principles, 

assumptions and techniques beyond those required in deductive logic. Scientific knowledge, in 

contradistinction to the certain knowledge of deductive logic, must always be partial, uncertain, 

fallible and, at best, probable. It is in this sense that the Jeffreys quote above refers to science as a 

branch of the subject matter of probability. 

In the context of the discussions of Chapter 1, it is therefore natural to ask: does probability have a 

role to play in measuring the strength of scientific knowledge? Does this perspective provide insights 

into what features are desirable for the scientific method? Do objective and epistemological 

philosophies of probability provide different answers to these questions? This chapter provides a 

brief overview of philosophical thought on the methodology of science, with a particular focus on 

the role of probability and the various answers to these questions that they imply. 

Science is a term that, today more than ever, can cover a very broad church of subjects. This chapter 

will focus on methodology as it generally pertains to the natural sciences (physics, chemistry, 

biology, etc.). Chapter 3 will then extend this discussion to consider the special methodological 

difficulties that arise in the social sciences (such as economics, sociology and psychology).  

In the discussion of probability and methodology in the natural sciences that follows in the first two 

parts of this chapter, we will consider two distinct schools of thought in the philosophy of scientific 

method (falsificationism and Bayesianism). These two perspectives can be closely related to the two 

distinct philosophical views of probability that were discussed in Chapter 1 (objective probability and 

epistemic probability). Perhaps unsurprisingly given the potential link between philosophy of 

probability and the philosophy of scientific knowledge, we will find that two of the leading 

proponents of the competing probability theories (who are already known to us from Chapter 1) also 



contributed very significantly to thinking on scientific method – in particular we will consider the 

work of Sir Karl Popper in developing falsificationism as a theory of scientific method that is 

consistent with objective probability; and the work of Sir Harold Jeffreys in applying an 

epistemological probability theory to develop his contrasting view of how scientific knowledge is 

discovered and tested. 

Following the discussions of falsificationsim and Bayesianism of Chapters 2.1 and 2.2, 2.3-2.5 will 

then move beyond the topics that are most closely related to probability theory, and briefly consider 

other key topics of philosophy of science that may still have implications for the methodology of 

actuarial science. 

But first it may be useful to note a couple of basic properties that tend to be found in any (orthodox) 

perspective on scientific method. The first and most fundamental of these is that science is 

inherently empirical. Scientific theories stand or fall on the extent to which they explain and / or 

predict behaviour that is seen in the ‘real’ natural world. This, in turn, demands a need for some sort 

of methodological postulate about the uniformity of nature – if there are not natural regularities that 

exist across space and time, scientific generalisation from empirical observation cannot hope to 

succeed. Even Popper, who tried to reject inductive inference and its associations wherever possible, 

conceded this point: “Scientific method presupposes the immutability of natural processes, or the 

‘principle of the uniformity of nature’.”84 

Second, since the medieval writings of William of Ockham and his famous razor, if not before, the 

concept of simplicity has been viewed as an intrinsically desirable property of scientific theories. 

Simplicity means explaining more from less. Karl Pearson provided a concise philosophical 

expression of Ockham’s razor: 

“The wider the range of phenomena embraced, and the simpler the statement of law, the more 

nearly we consider that he has reached a fundamental law of nature.” 85 

Putting differences aside on what philosophers mean by a fundamental law of nature, philosophers 

of science of most hues would agree with the proposition that simplicity is a basic desideratum of 

science. Poincare86, Popper87, Pearson and Jeffreys88 and many other leading figures in the 

philosophy of science have emphasised that it is the essence of science to describe as much natural 

phenomena as possible in the simplest of terms.  

We now turn our attention to the specifics of the two philosophical schools of falsificationism and 

Bayesianism and how they may be applied to the logic of the scientific method.  
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2.1 Falsificationism – an objectivist’s approach to scientific inference 
“The strongest argument in favour of the truth of a statement is the absence or impossibility of a 

demonstration of its falsehood.”89 Karl Pearson, The Grammar of Science, 1911. 

Falsificationism was first introduced as a well-developed philosophy of the scientific method by Karl 

Popper some eighty-five years ago in his Logic of Scientific Discovery90. The book must stand as one 

of the twentieth century’s most influential books on the philosophy of science. Popper’s Logic was 

first published when he was only 32, and he published extensively for many of the following 

decades, but it can be regarded as his locus classicus. There must be very few fields of 

methodological study in the second half of the twentieth century, across both the natural and social 

sciences, which do not explicitly consider how the methodology of their discipline stacks up against 

the tenets of Popper’s falsificationism. Today, perhaps with some extensions and / or caveats that 

will be discussed later in this chapter, Popper’s falsificationism is still regarded by many as a model 

or benchmark for an idealised logic of the scientific method. Like most good ideas, some historical 

anticipations can be identified in the works of earlier important thinkers, as illustrated by Karl 

Pearson’ quote above. Popper did not invent falsificationism, but he advocated and developed it as a 

form of inductive logic that he believed was at the core of a scientific method that was up to the task 

of forming scientific knowledge with meaningful empirical content. 

Popper, the Vienna Circle, Probability, Induction and Scientific Knowledge 

The decade between the mid-nineteen twenties and mid-thirties was a very fertile period for the 

philosophy of science. It was during this period that the Vienna Circle of logical positivists emerged 

as a group of thinkers that would have major influence on the path philosophy of science would take 

over much of the rest of the twentieth century. The logical positivists’ doctrine was notable for its 

empiricism and its view of metaphysics as being devoid of scientific meaning. Popper shared some 

(but certainly not all) of these philosophical values, was born in Vienna and attended the University 

of Vienna. But he was not a member of the Vienna Circle and would have rejected having the label 

of logical positivist applied to him. 

The Vienna Circle, at least in its early period, argued that a synthetic91 statement only had meaning if 

it was empirically verifiable – that is, if empirical evidence could conclusively confirm the statement 

to be true. This is a very high epistemic bar, as it demands certainty. In particular, it would seem 

impossible to empirically verify the truth of any universal generalisation (as such a generalisation 

applies to an infinite number of instances, making it impossible to empirically verify all applicable 

cases have the asserted property). Most scientific hypotheses imply a form of universal 

generalisation (i.e. a hypothesis states that, in given specified conditions, specified forms of 

behaviour between some phenomena will always occur). Over time, the logical positivists recognised 

that their requirement that meaningfulness required empirical verification was unrealistic: the 

(hugely successful) scientific knowledge that had been developed over the previous two hundred 

years could not meet this benchmark of empirical verification. Such knowledge was fallible, and not 

verifiable. But it surely wasn’t devoid of meaning. 

The logical positivists’ solution to this quandary was to attempt to develop a logic of inductive 

probability (Rudolf Carnap was especially notable in this field): if absolute empirical verification was 
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not attainable for scientific knowledge, then the next best thing would be a logical enumeration of 

the degree to which the empirical evidence ‘partially verified’ it. We saw in Chapter 1 that Popper 

took a different view of the meaning of probability. To Popper, probability was a property that was 

strictly related to mass phenomena generated under repeatable conditions. He did not believe there 

was a role for probability as a measure of the degree of belief in the truth of a given synthetic 

statement, including a scientific hypothesis.  

Popper was profoundly influenced by Hume’s problem of induction. A deep scepticism of the value 

of ‘naïve’ inductive inference by mere enumeration of positive instances is present throughout much 

of his work. Popper’s views on probability and inductive inference might appear to place him in a 

philosophical cul-de-sac – inductive inference from empirical evidence could neither verify the truth 

of a scientific hypothesis nor quantify the degree of belief which should be attached to the 

hypothesis. Did this imply there was no way for science to obtain knowledge? If the testing of 

scientific theories against empirical observation was a futile inductive process empty of epistemic 

content, how could science exist and successfully develop in the way that it evidently historically had 

done? 

The Falsificationist Solution 

Popper’s solution was to argue that empirical testing of scientific theories need not mean only using 

empirical evidence to build a positive inductive case for the truth of the theory. Empirical evidence 

could also be used to deductively demonstrate that the theory had not been proven to be false. 

Recall the colourful swan example of Chapter 1.3 where we found that any number of positive 

observations need not necessarily result in a probability of 1 being attached to the hypothesis that 

all swans are white. Yet one single observation of a non-white swan reduces the probability to 0 – 

and this arises as a piece of deductive logic, not inductive inference. This type of deductive 

argument, where a negative instance shows a universal law must be untrue, is an ancient part of 

logic and even has a formal Latin name – modus tollens.  

Popper’s philosophy of science used this logical asymmetry to argue that epistemically valuable 

scientific knowledge could be derived from empirical observation despite his belief that the simple 

enumeration of successes by induction was of no epistemic value. This implied empirical observation 

should be used to empirically test a scientific hypothesis in ways that had the potential to falsify it. 

And the more tests the hypothesis survived, the greater the strength of belief in the theory (though 

this strength could not be quantified as an epistemic probability and could never reach certainty). 

Note that the logic of falsificationism does not render scientific knowledge into deductive 

knowledge: in falsificationism, the theory is not deduced to be true or false. Rather, falsificationism 

is a form of inductive logic which Popper argued had (much) more epistemic value than the mere 

enumeration of positive instances. And there is nothing about the logic of falsificationism that would 

necessarily be disagreeable to a logical or subjectivist perspective of probability. The key 

differentiator between Popper and the logical or subjectivist perspective in this respect is that 

Popper rejected the use of quantitative epistemic probability as a measure of degree of belief in the 

scientific hypothesis (we will discuss further below what he proposed using instead). 

To Popper, falsificationism was so essential to the scientific method that it represented the 

demarcation between science and metaphysics (or anything non-scientific) - if a theory could not be 

subjected to tests that could produce a falsifying result when the theory was not true, then the 

theory could not be considered as belonging to science. This can be seen as Popper’s response to the 

logical positivists’ attempt to demarcate scientific and non-scientific knowledge by empirical 

verification.   



The Falsificationist Scientific Method  

The falsificationist philosophy implies a continual cycle of scientific progress where a new theory 

supersedes the last in the generality, accuracy or reliability of its implications. Below we will find that 

philosophers of science have identified several logical challenges and real-life complications in 

relation to the basic falsificationist model. But before discussing those, we first briefly summarise 

the key steps of this idealised model of scientific progress: 

1. Collect and classify empirical data through experiment and / or observation. Conjecture a 

theory that fits this data and which is consistent with background knowledge and other 

accepted scientific theories. 

An infinite number of theories may fit a finite set of empirical statements. For reasons that will 

become clearer below, ‘good’ properties of a scientific theory according to falsificationist principles 

will include simplicity and empirical testability. The development of a new scientific hypothesis was  

viewed by Popper as a form of creative or inventive process. A theory is a human construction for 

description and prediction of empirical phenomena. The falsificationist does not stipulate particular 

logical or methodological constraints on this creative process. The theory could be inspired by 

metaphysical ideals or come from other non-scientific inspiration. 

In this initial stage of the process of theory development, it may be difficult to say which comes first: 

the empirical observation or the theory. At one end of this spectrum might be the Baconian view of 

collecting as much empirical data as possible before formulating a theory that fits these facts 

(Bacon’s famous “countless grapes, ripe and in season”92). At the other end of the spectrum, 

theories may be conjectured that are motivated by primarily metaphysical ideas rather than already-

identified empirical patterns (Democritus’ theory of the atom, for example). Popper had a somewhat 

romantic notion of scientific theory creation that arguably sat closer to this end of the spectrum than 

to Bacon’s indiscriminate observing: “Bold ideas, unjustified anticipations, and speculative thought, 

are our only means for interpreting nature.”93  

2.  Logically deduce what the conjectured hypothesis implies for the behaviour of observable 

phenomena (beyond the observations considered above). 

This part of the process is fundamental to the falsificationist philosophy (and any empirical 

philosophy of science). It determines how the hypothesis can be empirically tested. For a 

falsificationist, the critical output from this stage of the process is an unambiguous determination of 

what the hypothesis implies cannot empirically occur (what Popper referred to as the theory’s 

‘potential falsifiers’). The more that the theory says cannot happen, the more testable and falsifiable 

the theory is, and the greater is the theory’s potential empirical content: 

“If the class of potential falsifiers of one theory is ‘larger’ than that of another, there will be more 

opportunities for the first theory to be refuted by experience; thus compared with the second 

theory, the first theory may be said to be ‘falsifiable in a higher degree’. This also means that the 

first theory says more about the world of experience than the second.”94 

Popper argued that simple theories rule out more than complex theories do. This therefore provides 

the falsificationist’s rationale for simpler hypotheses being preferred to complex theories – they are, 

all other things being equal, ‘falsifiable in a higher degree’. 
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This is all consistent with the idea that science’s aim is to explain as much as possible from the 

fewest and simplest assumptions. The most successful and important scientific theories tend to have 

implications for a very wide array of phenomena, and it is the success of the theory’s predictions 

relative to the empirical behaviour of such a wide array of phenomena that provides the theories’ 

high empirical content. Quantum theory, Newtonian mechanics and the kinetic-molecular theory are 

some historical examples of scientific theories which could claim to be falsifiable to a very high 

degree due to the testable implications that they have for a very diverse range of physical 

phenomena. 

3. Test the accuracy of the theory’s new predictions by collecting relevant data on the 

predicted phenomena through experiment or observation. 

The theory will be said to be ‘corroborated’ when the empirical data of the behaviour of the new 

phenomena matches the predictions of the theory. The theory is never verified as true. As noted 

above, Popper’s philosophy of objective probability rules out attaching a probability to the theory 

being true. He argued that a theory could, however, be corroborated to different degrees: 

“The whole problem of the probability of a hypothesis is misconceived. Instead of discussing the 

‘probability’ of a hypothesis we should try to assess what tests, trials, it has withstood; that is, we 

should try to assess how far it has been able to prove its fitness to survive by standing up to tests. In 

brief, we should try to assess how far it has been ‘corroborated’.”95 

It is fundamental to Popper’s philosophy that the empirical corroboration of a hypothesis does not 

have a binary state. A hypothesis that passes new potentially falsifying tests could be said to be 

corroborated to a greater degree than it was before. This ‘degree of corroboration’ sounds 

fundamentally similar to the Bayesian idea of determining the posterior probability of the hypothesis 

(discussed further below in Chapter 2.2). And it clearly behaves in some similar ways. For example, 

Popper even notes that “[a theory’s] degree of corroboration will increase with the number of its 

corroborating instances.”96 He also states:  

“It is not so much the number of corroborating instances which determines the degree of 

corroboration as the severity of the various tests to which the hypothesis in question can be, and has 

been, subjected.”97 

Again, none of this is inconsistent with the behaviour of a Bayesian posterior probability. The 

fundamental difference between the Bayesian posterior probability of the truth of a scientific 

hypothesis and the Popperian degree of corroboration of a scientific hypothesis is that, although it 

appears it will be possible to at least sometimes rank the degree of corroboration that has been 

achieved by two sets of tests, the degree of corroboration will generally not be capable of 

quantification and will not correspond to an epistemic probability of truth: 

“The degree of corroboration of two statements may not be comparable in all cases…we cannot 

define a numerically calculable degree of corroboration, but can speak only roughly…”98  

 
95 Popper (1959), p. 248. 
96 Popper (1959), p. 268. 
97 Popper (1959), p. 266. 
98 Popper (1959), p. 266. 



So, positive empirical evidence in support of the theory will increase its degree of corroboration and 

negative evidence will falsify the theory. Popper, however, notes that the negative evidence must be 

a ‘reproducible effect’99 to qualify as a falsifier of the hypothesis (we will return to this point below). 

4. When a theory has been falsified, the theory may be rejected altogether, or it may be 

amended or extended by an auxiliary hypothesis. Such a change must not be ad-hoc (i.e. 

merely fit better to the considered empirical data in order to now pass the given test) but 

must provide new content (new predictions by means of logical deduction from the 

postulates of the new hypothesis) which can be corroborated as per above.  

Again quoting from Popper’s Logic: “As regards auxiliary hypotheses, we propose to lay down the 

rule that only those are acceptable whose introduction does not diminish the degree of falsifiability 

or testability of the system in question, but, on the contrary, increases it.”100 

This is another way in which the falsificationist method encourages simplicity: complexity can only 

be added if it creates new predictions which can be corroborated by new evidence. This also 

demonstrates how the falsificationist methodology should create a scientific process that is 

continually creating new forms of higher scientific understanding. Every new theory should be 

comparably better than the old theory: 

“A theory which has been well corroborated can only be superseded by one of a higher level of 

universality, that is, by a theory which is better testable and which, in addition, contains the old, well 

corroborated theory – or at least a good approximation to it.”101 

In the Popperian scientific method, the above basic steps form a cycle of never-ending scientific 

progress. Whilst the method above has been cast as part of falsificationist logic, it forms the essence 

of the positive scientific method more generally, irrespective of whether we subscribe to the view 

that empirical testing can deliver strict falsification of a scientific theory or whether we take degree 

of corroboration or posterior probability of truth as our measure of empirical content. It is 

sometimes referred to as the hypothetico-deductive method. It is clearly a simplified model of how 

scientific knowledge develops ‘in the real world’. We now turn to a couple of important 

philosophical and logical complications that the falsificationist model of scientific logic gives rise to 

(and some potential sociological complications will be briefly discussed in Chapter 2.5). 

Falsification of Systems of Theories: Duhem-Quine and Braithwaites’ Hierarchical Structure of Theory 

The logic of falsificationism (in its basic or ‘naïve’ form) relies on the ability to conduct a crucial 

experiment or test that will, in the event that the hypothesis is actually false, produce results that 

single-handedly lead by logical deduction to the unequivocal conclusion that the hypothesis is 

indeed false. The Duhem-Quine thesis represents a challenge to the logically deductive nature of 

falsificationism. It states that it is impossible for such a crucial experiment to exist.  

This may, at first glance, seem an odd proposition, given the very direct and straightforward nature 

of the modus tollens logic of falsificationism. The thesis, however, argues that a theoretically-

predicted experimental result will always rely on a number of auxiliary assumptions and / or other 

hypotheses as well as the hypothesis that is intended to be tested. That is, the logical deductions 

that have been made in order to make the observational prediction will always involve a form of 

deductive system, rather than only a single hypothesis.  
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This implies an experiment can therefore only test the deductive system as a whole – that is, it can 

only test a number of hypotheses and assumptions simultaneously. If and when an experiment 

produces results that are impossible according to the deductive system, we can deduce that some 

element of the logical system is false. But it is not possible to say which of the hypotheses or other 

auxiliary assumptions of the deductive system should be rejected. 

The essence of this thesis was first developed by Pierre Duhem, the French scientist and 

philosopher, in 1904-5102 (it was further refined by the American philosopher of science Willard 

Quine in the 1950s). Its origin therefore pre-dates Popper’s work on falsificationism by decades and 

throws the whole logic of deductive falsification through experimental observation into question. 

However, in theory, the logic of falsification need not rely on a single crucial experiment. It may be 

possible for the scientist to design a system of repeatable experiments or collate a series of different 

observations that can allow the various hypotheses and assumptions to be analysed and isolated in 

turn. Nonetheless, the Duhem-Quine thesis suggests that the falsificationist method described 

above can only be viewed as an idealisation of a workable scientific method. The complexities of the 

real world will mean that the professional judgement (or hunch) of the scientist may be necessary in 

the appraisal of scientific knowledge and, in particular, when deciding which parts of a system of 

hypotheses should be rejected.  

In the 1940s and ‘50s, a new generation of philosophers of science took over the mantle of 

positivism from the Vienna Circle. This generation became known as the logical empiricists, and 

notable members included Richard Braithwaite, Ernest Nagel and Carl Hempel, all of whom are 

discussed further below. Logical empiricists were interested in, amongst other things, the logical 

structure of scientific theories and its implications for evidence, testing and confirmation. Their work 

had potentially important implications for the logic of falsificationism in the presence of the Duhem-

Quine thesis. 

Braithwaite argued that a scientific theory could be considered as a hierarchal deductive system of 

hypotheses and postulates103. The system may contain higher-level hypotheses that include 

theoretical, non-observable terms that cannot be directly empirically tested. From these higher-level 

hypotheses, lower-level hypotheses may be deduced that consist entirely of observable terms that 

do have empirically testable implications. The structure may consist of any number of levels and 

hypotheses.  

Even in the case of the lower-level hypotheses, it is important to note that a hypothesis can still be 

considered as a formal, abstract, self-contained piece of deductive logic absent of any necessary 

empirical content. (The philosophical literature abounds with conflicting jargon for a theory when it 

is considered as an abstract logical system divorced from empirical interpretation: ‘pure theory’, 

‘model’, ‘abstract law’, ‘analytical system’ etc.). It will therefore be necessary to specify how the 

terms of the theory correspond to empirical counterparts. This gives the theory empirical content, 

making it a scientific hypothesis (or ‘applied theory’ or ‘synthetic’). 

Furthermore, where the empirically observable objects of the theory are unambiguous, there may 

often still be a ‘gap’ between the theory’s empirical implications and what can be easily observed in 

empirical reality. That is, the lower-level scientific hypotheses that imply specific behaviour for 

observable phenomena may require further specifications or assumptions in order to fully articulate 

the testable physical implications of the theory under a set of given conditions. In contemporary 
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philosophy of science, this gives rise to one of the more common usages of the term ‘model’. For 

example, the theory of classical mechanics can give rise to a model of a pendulum which can then 

yield empirically testable results. The pendulum model is intended to apply the mechanical theory to 

some empirically specific phenomena, but gaps may remain due to real-life observational 

complications such as the effect of air friction. So, in this sense the model is an idealisation of reality. 

It may be possible to develop approximations or use other theory to fill in or correct for the gaps in 

the model, thus making the model an ever-improving representation of reality (assuming its 

underlying theory ‘works’ in this applied domain). The role of scientific models and their interface 

with theory and reality has been a major topic in the philosophy of science since the 1980s104. 

According to Braithwaite’s structure, a single given hypothesis may be the product of several higher-

level hypotheses, and these may lead to a large number of lower-level testable hypotheses. The 

same high-level hypotheses may therefore be ‘embedded’ in multiple theories across the given 

scientific field (or even across various scientific fields in the cases of the most general and important 

scientific theories). The empirical corroboration of a given lower-level hypothesis will provide 

indirect empirical support for all the higher-level hypothesis from which it is deduced. By increasing 

the empirical support these higher-level hypotheses, this in turn provides further empirical support 

for the other lower-level hypotheses that have been deduced from them.  

When faced with a falsifying observational result for the lower-level hypothesis, the scientist now 

has a choice of which hypotheses to reject – the lower-level hypothesis with the directly testable 

empirical consequences has been falsified; if this hypothesis has been jointly deduced from higher-

level hypotheses in a logically definitive way, then at least one of these higher-level hypotheses must 

also be false. If several higher-level hypotheses have been used to deduce the lower-level 

hypothesis, the question then arises of which higher-level hypothesis to consider falsified? 

The scientist will likely be inclined to make the choice that is the least disruptive for the overall 

deductive system of the science. This means that, in a sense, some (highest-level) hypotheses of the 

science will essentially be unfalsifiable with respect to that observation at that time. In this case, the 

hypothesis has become what the philosopher Arthur Pap called ‘functionally a priori’105. Braithwaite 

argued that this a priori status would only be temporary106. If indeed the higher-level hypotheses of 

the system were no longer valid premises for the phenomena under consideration, the emergence 

of further falsifying results for the system would encourage a wider revision of the system, and 

ultimately a reconsideration of some of its highest-level hypotheses. 

The ‘unfalsifiability’ of any single hypothesis by any single experiment or observation that arises in 

Braithwaite’s hierarchical structure is, of course, well-aligned with the Duhem-Quine thesis 

discussed above. Braithwaite’s hierarchical structure can be thought of as a useful model for 

articulating the point made by the thesis. Quine’s original and major contribution to the thesis, the 

essay Two Dogmas of Empiricism in his book From a Logical Point of View107, was published in the 

same year (1953) as Braithwaite’s Scientific Explanation. Quine argued that ‘the unit of empirical 

significance is the whole of science’108. This became known as a confirmational holism. Where 

Braithwaite described a hierarchy of hypotheses, Quine wrote of a man-made fabric which impinges 
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on experience only along the edges. The essential point is the same: the total field of scientific 

knowledge is underdetermined, and much of this knowledge can only be subjected to empirical 

testing indirectly. Quine argued that this meant that the conventional philosophical distinction 

between theory and empirical application – Kant’s analytic and synthetic; Hume’s ideas and facts; 

Popper’s metaphysics and science; Weber’s abstract and concrete – was really a difference in degree 

rather than a difference in kind. He even argued that the epistemic validity of pure mathematics was 

based on its use in empirical science (that is, in Braithwaite’s terminology, as the highest of higher-

level hypotheses)109.  

So far, this discussion is rather abstract. Let us now illustrate how the logic of falsificationism and the 

Duhem-Quine thesis can apply to a famous example from the history of science. The planet Uranus 

was discovered by telescope in 1781 by William Herschel. Herschel initially thought he had found a 

comet, but astronomers established over the following few years that the object he had identified 

was in fact orbiting the sun and it was subsequently established that it was actually the seventh 

planet of the solar system. Observations of the path of Uranus over the following few decades, 

however, showed that its path was not exactly as predicted by Newton’s laws of gravity and 

mechanics. The logic of Popperian falsification would suggest that this observation could be 

interpreted as a falsification of Newton’s laws and, hence, at least one of the higher-level 

hypotheses of Newtonian mechanics should be rejected and a new theory of gravitation and 

mechanics would be required to replace it. But this isn’t what happened. Scientists’ conviction in 

Newtonian mechanics was sufficiently strong that they preferred to interpret this evidence 

differently – the Newtonian prediction of the path of Uranus relied on the auxiliary assumption that 

there was not another significant mass nearby whose gravitational force could act upon the path of 

Uranus. Scientists believed that it was much more likely that this auxiliary assumption was false than 

that the laws of Newtonian mechanics were false. And this, in turn, was a judgement that was based 

on the degree to which Newtonian laws had already been corroborated in other similar settings, and 

the feasibility that another as-yet unidentified object was in the vicinity of Uranus’ path. 

Astronomers were able to infer the mass and orbit of the as-yet unidentified planet that would make 

the laws of Newtonian mechanics fit with the observed path of Uranus. This hypothesised planet, 

Neptune, was duly observed by telescope in 1846, and its observed path was indeed as predicted by 

the Newtonian calculations. So, what initially looked like evidence falsifying Newtonian mechanics 

actually provided it with an impressively powerful empirical corroboration (albeit some 65 years 

after the initial potentially falsifying observation). 

This story has an interesting twist in the tail. Around the time of the discovery of Neptune, 

astronomers also identified that Mercury’s behaviour was slightly anomalous relative to its 

Newtonian predictions (technically, its perihelion was advancing slightly faster than predicted). Using 

the same logic as that which led to the prediction and discovery of Neptune, astronomers 

hypothesised that there was another planet, yet to be observed, in an orbit closer to the sun than 

Mercury. Confidence in this tried and tested logic was sufficiently high for the hypothesised planet 

to be given a name - it was called Vulcan. But the seemingly inevitable visual observation of the 

planet Vulcan never came.  

In 1905, Einstein published his general theory of relativity, which essentially superseded Newtonian 

mechanics (or, at least, showed that Newton’s inverse square law was only a very good 

approximation to the relationship between distance and gravitational force implied by Einstein’s 

theory). The theory of relativity predicted the behaviour of Mercury’s perihelion very accurately, 
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without any need for the planet Vulcan. This falsified the hypothesis that Vulcan existed. It also 

provided a logically robust falsification of Newtonian mechanics. Scientists, however, still use 

Newtonian mechanics very widely, and it is still taught to all students of physics. The general theory 

of relativity did falsify Newtonian mechanics, but it also clarified how accurate and reliable 

Newtonian mechanics could be as an approximation to relativity within a particular domain of 

parameter values for velocity, mass and distance. 

Falsification and Probabilistic Hypotheses 

Popper’s motivation for the development of the falsificationist methodology was fundamentally 

driven by his scepticism about the epistemic value of inductive inference by mere enumeration of 

positive instances. As noted above, falsificationism avoids a reliance on this form of induction by 

exploiting the deductive consequence of the negative observation: whilst an infinity of positive 

observations is insufficient to verify the truth of a universal generalisation, one negative observation 

can be sufficient to demonstrate it is false (the Duhem-Quine thesis notwithstanding).  

However, there is a particular form of scientific hypothesis where a negative observation cannot 

logically falsify the theory, even in the absence of any Duhem-Quine considerations. Under Popper’s 

criterion for demarcation between science and metaphysics, this may appear to be a contradiction: 

we noted that, according to Popper, the falsifiability of a theory was necessary for it to be 

considered as a scientific theory. But there was an interesting and important exception that was 

impossible for Popper to ignore, especially during the era in which he wrote the Logic of Scientific 

Discovery.  

This exception is where the scientific theory includes a probability statement. Or, more specifically, 

where the deductive consequences of the theory are probabilistic. In this case, a universal 

generalisation is no longer of the form ‘all A are B’, but instead something like, ‘some specified 

proportion of A are expected to B’. It was impossible for Popper to argue such forms of theory were 

metaphysics (or anything else) rather than science for one very simple reason: the most important 

and successful scientific theory of his time, quantum theory, used probability statements 

fundamentally and irreducibly. And the relevance of probability statements in science has arguably 

only grown since the time of publication of Popper’s Logic, for at least two distinct reasons: it has 

become apparent that the irreducibly probabilistic nature of quantum theory is not a passing fad, 

but is likely to be a feature of our understanding of the fundamentals of natural science for a long 

time to come; second, the social sciences have developed significantly in scale and breadth over the 

last one hundred years, and, as we shall see in Chapter 3, probability statements tend to play a 

major role in the fields of social science.  

When a scientific theory uses probability statements and produces deductive implications that are 

probabilistic, it may not be logically possible to falsify it. The theory may imply a non-zero probability 

for literally any given observation, in which case no observation can lead to the logical deduction 

that the theory is false (unless the observation falls outside the bounds of the specified probability 

distribution for the outcome, but as these bounds may be infinite, that does not always help).  

Popper fully recognised this issue and argued that ‘practical falsification’ could be considered to 

have been attained when the probability of the observation occurring according to the theory was 

extremely low. In essence, he advocated the use of what a statistician would recognise as a 

hypothesis test where the null hypothesis is that the scientific theory is true. He argued that this 

approach fitted with his criteria for falsification, as these criteria included the requirement for the 

falsifying observation to be a ‘reproducible effect’. Such improbable observations would not be 

regularly reproduced in further observations if the theory was indeed correct: 



“The rule that extreme improbabilities have to be neglected agrees with the demand for scientific 

objectivity….I do not deny the possibility that improbable events might occur…What I do assert is 

that such occurrences would not be physical effects, because, on account of their immense 

improbability, they are not reproducible at will.”110 

Whilst this is doubtless the only practical solution, the presence of probabilistic statements creates 

particular methodological considerations for falsificationism. Falsificationism’s greatest asset – the 

uncompromising clarity of its deductive logic – is impaired by the presence of probability 

statements. With a deterministic theory, a falsifying result is final, and there is no logical possibility 

of the rejection of the theory being wrong other than through Duhem-Quine considerations. In the 

case of probabilistic theories or statistical generalisations, a falsifying conclusion must always be 

provisional and subject to ‘cancellation’ – it is logically possible that further evidence will emerge 

that will show that the previous falsifying evidence was merely a statistical outlier. When such new 

evidence emerges, the only logical outcome is for the scientist to change their mind and conclude 

that the theory is not falsified after all.  

The extent to which the above ‘cancellation’ of a falsification conclusion is likely to occur does of 

course depend on the specific circumstances of the empirical study, and the statistical strength of 

the initial falsification. This brings us to the next methodological complication with empirically 

confirming probabilistic theories: the ‘extreme improbabilities’ that Popper mentions must be 

quantified in some way. Specifically, we must choose a degree of improbability as a criterion for 

‘practical falsification’. As in standard hypothesis testing theory (see Chapter 1.2), this choice 

involves a trade-off between the probability of false negatives (i.e. concluding the theory has been 

falsified when it is true; a Type I error in hypothesis testing jargon) and the probability of false 

positives (i.e. concluding the theory has not been falsified when it is false; a Type II error). The 

‘optimal’ choice here must have regard to the costs and consequences of these errors. Unlike the 

rest of the theory of falsificationist scientific methodology, the choice of significance level may 

therefore need to have particular regard to subjective or ethical value choices and the utility of 

different outcomes111.  

This element of subjectivity runs contrary to Popper’s strongly objectivist philosophy of science, but 

it seems theoretically inescapable in a probabilistic setting. These methodological difficulties are, 

however, largely alleviated by large volumes of observational data. And Popper naturally had in 

mind here results from the observation of mass, repeatable physical phenomena. In much, though 

not all, of natural science, such experimental observation will be available. By the time Popper 

published Logic, he had already witnessed the emergence of very strong experimental evidence in 

support of probabilistic scientific theories such as the kinetic-molecular theory112. But there may be 

some important branches of natural science, such as the theory of evolution, which have a 

significant probabilistic element but where controlled observation of mass, repeatable phenomena 

is not possible.  

Falsification of probabilistic hypotheses in the social sciences – where observation may be limited in 

quantity and non-stationary in quality - may be similarly challenging. This is where these 

methodological complications will be most acute. These complications have been discussed at some 

 
110 Popper (1959), p. 195. 
111 This type of problem of decision-making under uncertainty has become a discipline in its own right and is 
commonly referred to as decision theory. It was pioneered by the American statistician Abraham Wald aound 
the same time that Popper’s Logic was first published - see Wald (1939). 
112 Nye (1972) 



length in contemporary scientific methodology literature amidst concern about a ‘replication crisis’ 

and the growing recognition that research findings based on limited statistical testing may often 

ultimately prove unreliable113.  This literature argues that the probability of false positive findings in 

contemporary scientific research is too high as a consequence of a range of factors: the study design 

may use a sample size that has inadequate statistical power; modern research may simultaneously 

test many multiple hypotheses in one study (increasing the likelihood of at least one hypothesis 

being significant by chance114); many research teams may be studying the same phenomenon 

(increasing the probability that at least one study finds statistically significant data by chance); bias 

can arise from conflicts of interest or prejudice, and this may be allowed to persist due to equivocal 

measures of outcomes and / or flexibility in research methodology; the small effect sizes that 

researchers are attempting to identify in fields such as epidemiology are more prone to false positive 

conclusions.  Some of these factors are fundamentally sociological rather than due to the logic of the 

methodology. But these factors have more scope to persist in the context of probabilistic 

hypotheses rather than deterministic ones. 

Falsificationism is arguably a highly intuitive approach to developing robust scientific knowledge in a 

world where the problem of induction has no solution. It recognises that, even in the presence of 

strong inductive scepticism, a form of (fallible) knowledge can be developed whose strength is based 

on its relation to empirical observation. But the Duhem-Quine thesis and the application of 

falsificationist logic in the presence of probability statements serve to highlight that the logic of 

falsificationism has some important and inherent limitations of a purely logical and philosophical 

nature (and it will inevitably have further limitations of more practical and sociological natures too).  

In the context of our discussion of probability, the other vitally interesting aspect of Popper’s 

philosophy of science is his assertion that epistemic probabilities cannot be assessed for the truth of 

a scientific hypothesis. Whilst Popper believed that the degree of corroboration of a hypothesis was 

non-binary, he did not believe it could be quantified, and he did not equate it with a notion of 

probability. This philosophical position was and perhaps still remains far from unusual. However, 

there is another school of thought – broadly speaking, known as the Bayesian school - that argues 

that it is perfectly natural, logical and useful to measure epistemic probabilities for the truth of a 

scientific hypothesis, or indeed any other form of synthetic statement. The following section will 

explore how advocates of an epistemic definition of probability envisioned such probabilities being 

used in the development of scientific knowledge. 

2.2 Bayesianism - an epistemological alternative 
“When making a scientific generalisation, we do not assert the generalisation or its consequences 

with certainty; we assert that they have a high degree of probability on the knowledge available to 

us at the time, but that this probability may be modified by additional knowledge.”115 Harold 

Jeffreys, Scientific Inference, 1937. 

The first half of this statement is wholly consistent with falsificationist methodology, which explicitly 

recognises the fallible nature of scientific knowledge. The latter half of the statement, however, 

marks a divergence in philosophical outlook, at least if the use of the word ‘probability’ above is to 

be regarded as meaning a measure logically capable of quantitative expression in the context of the 

truth of a synthetic statement. To the objective falsificationist, the mathematical concept of 
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probability is inapplicable to an epistemic statement about a single ‘event’ such as the truth of a 

scientific generalisation. However, if we replace the word ‘probability’ with ‘corroboration’ and 

decline to attach a numerical quantity to the degree of corroboration, there would be nothing in 

Jeffreys’ quotation that appears inconsistent with Popper’s falsificationism. This section will explore 

how the epistemic perspective of probability that was discussed in Chapter 1.2 and 1.3 can be 

applied to scientific inference to obtain probabilities for the truth of scientific hypotheses as per the 

above quotation of Jeffreys.  

As was noted above, the logical approach to probability that was advocated by Keynes and Jeffreys 

failed to produce general inductive rules capable of generating numerical probabilities for a very 

broad range of forms of evidence. The sum rule, the product rule and Bayes’ Theorem that closely 

follows them can produce well-defined numerical probabilities for data sets that meet the criteria of 

exchangeability, assuming a pre-data prior probability distribution can be specified. But beyond that, 

general rules for the broader enumeration of logical probabilities have proven elusive. Similarly, the 

logical positivist movement, largely associated with the Vienna Circle of European philosophers of 

the 1920s and 1930s such as Rudolf Carnap also set out to show how partial evidence could be 

rationally treated to obtain objective positive measures of probable knowledge. This program never 

achieved its authors’ ambitious objectives, thought its attempts and writings had a very significant 

impact on philosophy of science and an influence beyond the natural sciences. Consequently, in the 

20th century history of the philosophy of science, the objective of developing a positive theory of 

how to use inductive evidence in the testing of scientific theory saw the logical approach of Jeffreys 

and Keynes largely superseded by the subjective probability philosophy of Ramsay and De Finetti.  

In more recent decades, however, the logical approach has made something of a resurgence. When 

we refer to Bayesianism in this section, we therefore have mainly the logical probability in mind, 

though similar points will often apply to the subjectivist approach – the essential point is that 

probability here is being used as an epistemic measure of plausibility for singular statements rather 

than only as a frequency or propensity for the occurrence of repeatable mass phenomena. The 

passage below from Jeffreys’ Theory of Probability highlights his philosophical dispute with those 

who reject the validity of epistemic probability and its application to scientific hypotheses:  

“The most serious drawback of these [frequency] definitions [of probability] is the deliberate 

omission to give any meaning to the probability of a hypothesis. All that they can do is to set up a 

hypothesis and give arbitrary rules for rejecting it in certain circumstances. They do not say what 

hypothesis should replace it in the event of rejection, and there is no proof that the rules are the 

best in any sense. The scientific law is thus (apparently) made useless for purposes of inference. It is 

merely something set up like a coconut to stand until it is hit; an inference from it means nothing, 

because these treatments do not assert that there is any reason to suppose the law to be true, and it 

thus becomes indistinguishable from a guess.”116 

This passage does not make explicit reference to Popper or falsificationism, but there can be little 

doubt that this is what he has in his sights here – to Jeffreys, it is falsificationism that sets up a 

hypothesis ‘like a coconut to stand until it is hit’. The key point that Jeffreys’ quotation above makes 

is that falsificationism does not consider the performance of a hypothesis relative to another – if the 

hypothesis is falsified, the scientist is potentially left with nothing until the day a new, better theory 

comes along, which might never arrive. The Bayesian approach, by assuming the probability of the 

truth of a hypothesis can be quantified, naturally permits such probabilities to be assessed for all 

possible hypotheses under a given set of evidence. This, in principle, can provide an assessment and 
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a ranking and comparison of all these hypotheses at any given moment. This is arguably a more 

informative approach to appraisal of hypotheses than working from the assumption that a given 

hypothesis is the ‘right’ one (and therefore all others are the ‘wrong’ one) until it reaches the point 

of falsification. 

Philosophical Scepticism on the Measurement of Epistemic Probabilities for Scientific Hypotheses 

Finding an approach to logically quantifying a probability for the truth of a hypothesis is, however, a 

seriously demanding problem. It requires that all forms of evidence relevant to the probability can 

be quantified; and that a functional form can be found that can transform these quantitative 

measures into an objective epistemic probability. Many philosophers of science have expressed 

severe doubts that such a thing can be done, even amongst those who have accepted and embraced 

the general development of epistemic, logical probability.  

As noted in Chapter 1, Keynes, whilst a forthright advocate of probability as a measure of partial 

knowledge, did not believe that all such probabilities could be enumerated and thus compared and 

ranked. And many leading 20th century philosophers of science, including those sympathetic to idea 

of epistemic probability, rejected the idea that epistemic probability could be usefully applied to the 

truth of a scientific hypothesis. For example: 

• Ernest Nagel, another notable philosopher of science who was a general proponent of the 

use of epistemic probability, was highly sceptical that probabilities for scientific hypotheses 

could be enumerated and ranked117.  

• Rudolf Carnap was equal only to Jeffreys in his commitment to the development of an 

epistemic probability that was based on inductive inference. But even he explicitly viewed it 

as ‘out of the question’ that quantitative epistemic probabilities could be attached to the 

degree of confirmation attributable to complex scientific theories such as quantum theory or 

Einstein’s general relativity. In his view, the relevant body of evidence was so immense and 

complex that it would be impossible to express it in a quantitative form that was capable of 

use in a piece of inductive logic that would produce an objective epistemic probability118. 

• The Cambridge philosopher R.B. Braithwaite who we discussed earlier was another notable 

philosopher of science of the mid-twentieth century who expressed strong scepticism that a 

theory of logical probability could enumerate probabilities for hypotheses. Braithwaite 

wrote ‘it is difficult to see how a formal logic of credibility or acceptability or confirmation 

can help in the matter, beyond pointing out obvious truisms as that if a hypothesis is 

supported by good evidence, any lower-level hypothesis which is a consequence of it is also 

supported by good evidence and may well also be supported by other good evidence.’119 

Producing Epistemic Probabilities for Scientific Hypotheses: The Basic Approach 

So, how did Jeffreys and the wider Bayesian school approach the evaluation of the probability of a 

scientific hypothesis? Well, the philosophical starting point is to assume it is possible: as noted in 

Chapter 1, Jeffreys’ probability theory took it as axiomatic that for all propositions and any given set 

of evidence, there exists a unique conditional probability. 

From there, the basic mathematical starting point is Bayes’ Theorem, which, as noted in Chapter 1, is 

sometimes referred to as the Principle of Inverse Probability in this context. For our current 

purposes, it can be conveniently written in the form: 
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where h1, h2,…, hn are mutually exclusive and exhaustive hypotheses (that is, one and only one of the 

hypotheses is true); and e is the available evidence. In standard Bayesian terminology, P(h) is the 

prior probability of the hypothesis h being true (i.e. prior to the specific evidence e being available, 

but after consideration of all other available evidence and relevant background knowledge and 

information); and P(h|e) is the posterior probability after consideration of evidence e. 

In the vernacular of falsification, evidence that falsifies one of the competing hypotheses would 

reduce its posterior probability to zero and thereby reduce the field of surviving possible hypotheses 

from n to n-1. Clearly, if this falsification process occurred for all hypotheses until only one possible 

hypothesis remained, then the posterior probability of that hypothesis would increase to 1. But, 

more generally, it is not necessarily the case that evidence that falsifies one of the n hypotheses will 

necessarily result in an increase in the posterior probability of all the remaining hypotheses (though 

clearly the posterior probabilities of the surviving hypotheses must sum to one, if it is assumed that 

our set of hypotheses is the exhaustive set of all possible hypotheses). 

The assumption that it is known that there are exactly n and only n hypotheses with a non-zero 

probability of being true may seem innocuous. But it may only be reasonable under fairly special 

circumstances. It would seem especially difficult to justify this assumption when considering the 

behaviour of relatively poorly understood phenomena. How can it be known with certainty that the 

truth resides amongst the candidate hypotheses? How can we be certain that there isn’t some other 

hypothesis that we have completely overlooked that turns out to be true? And doesn’t this imply 

that all future potential scientific progress must be anticipated? For example, suppose we are in 17th 

century Cambridge, busying ourselves with a Bayesian appraisal of various competing theories of 

gravity (let us set aside that Bayes has not yet been born!). According to this framework, some non-

zero probability ought to be attached to the theory of relativity. There would be no particular 

evidential support for it at the time, so its probability may not be very high, but it must be non-zero, 

otherwise the process of updating the posterior probabilities could never attach any probability to 

the theory of relativity, no matter what evidence subsequently arose to support it.  

Priors and Simplicity 

In many cases, it may be natural to assume the number of candidate scientific hypotheses n is 

infinite – after all, there may be an infinite number of hypotheses that fit a specified body of 

scientific evidence (to draw a simply analogy, there are an infinite number of curves that fit through 

any finite series of points). The probabilities of the possible hypotheses, however, must of course 

sum to 1. This is true for both the posterior and prior probabilities. Bayes’ Theorem will ensure that 

the posterior probabilities sum to 1 if the prior probabilities do. How do we ensure the prior 

probabilities sum to 1 when an infinite number of hypotheses have a non-zero prior probability?  

Jeffreys proposed a novel general solution to this problem. He argued that the hypotheses’ prior 

probabilities could be ordered (as, by his own axiom, all probabilities can be ordered), and they must 

form a converging series that, naturally, summed to 1. He noted this implied the order of magnitude 

of the prior probabilities must diminish quite rapidly. The novelty of his approach was to then 

propose that the prior probabilities of the hypotheses could be ordered by the simplicity of the 

hypothesis. According to Jeffreys, this ordering could be achieved because all scientific hypotheses 

could be represented as ‘differential equations of finite order and degree, in which numerical 

coefficients are integers’. Complexity (the antithesis of simplicity) was defined as ‘the sum of the 



order, the degree, and the absolute value of the coefficients’.120. He then took it as axiomatic that a 

simpler hypothesis had a much higher prior probability than a complex hypothesis, such that the 

sum of the infinite series of increasingly complex hypotheses would converge to one. Jeffreys called 

this axiom the Simplicity Postulate. This postulate also provides a solution to the difficulty we noted 

above of having to anticipate all future scientific progress: if all possible hypotheses can be 

expressed in a functional form as Jeffreys describes, then it is indeed possible for all future potential 

theories to be anticipated and for a prior probability to be attached to all of them. 

The Simplicity Postulate is not logically derived from more basic premises. It is postulated as an 

axiomatic assumption that Jeffreys believed was reasonable given the scientist’s strong preference 

for simple hypotheses. And, perhaps predictably, other philosophers have argued that it is not 

possible to quantify and rank the simplicity of all forms of scientific hypothesis, either in the way 

described by Jeffreys or indeed any other way121. 

It can be seen from the above brief discussion that the foundations of the Bayesian framework rely 

on a number of arguably quite demanding axioms and assumptions. The ability to make an 

exhaustive specification of all possible hypotheses; the existence of a unique numerical probability 

for any hypothesis given any form of evidence; and, related to this, a means of expressing ignorance 

through the specification of uninformed priors. These are all philosophically stretching and 

contested axioms for a system of probability as a degree of partial belief in a scientific hypothesis. 

Whether invoking the Simplicity Postulate or not, the Bayesian framework and the Principle of 

Inverse Probability means that the prior probabilities of hypotheses must inevitably enter into their 

posterior probabilities. Jeffreys recognised this was generally unattractive, and he argued for a 

scientific method that minimised the dependency of the posterior on the prior: 

“Prior probabilities enter into our formulae, but we do not know their values, and they always affect 

the posterior probabilities. But in scientific work, though we can never make the posterior 

probability completely determinate, we can make it so near zero or unity as to amount to practical 

certainty or impossibility for all ordinary values of the prior probability. This is done by repeated 

verifications and crucial tests.”122 

Philosophical Differences and Practical Similarities 

It is interesting to note how similar Jeffreys’ final sentence above is to a falsificationist view of 

empirical science. Clearly, a ‘crucial test’ is an experiment or observation that could rule out the 

hypothesis if a particular result was obtained – that is, which falsified the hypothesis. Jeffreys 

repeatedly emphasised the importance of such tests: 

“The more facts are in agreement with the inferences from a law, the higher the probability of the 

law becomes; but a single fact not in agreement may reduce a law, previously practically certain, to 

the status of an impossible one.”123 

In Bayesian terminology, ‘a single fact not in agreement’ implies P(e|h) = 0. By the Principle of 

Inverse Probability, any such result renders the posterior distribution of the hypothesis (i.e. P(h|e)) 

zero also. Falsificationists call this a falsification. Both approaches arrive at the same conclusion that 
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the probability of the hypothesis being true is zero (subject to the Duhem-Quine thesis caveat 

discussed above which again applies similarly to both philosophical perspectives). 

Given the vigour with which the objective versus Bayesian probability debate has historically been 

conducted, it is perhaps easy to overlook that, if we set aside the philosophical dispute about 

whether or not we should attach numerical probabilities to scientific hypotheses, we can find some 

significant similarities between the advocated scientific methods of the falsificationist and Bayesian 

approaches. Both approaches advocate a vigorous approach to empirical testing of a scientific 

hypothesis that values both the quality and quantity of observations. The inductive logic of the 

Bayesian setting means that each positive observation increases the posterior probability of the 

hypothesis. Popper also acknowledged (see Chapter 2.1 above) that increasing numbers of positive 

observations increased the degree of corroboration of a hypothesis. In the Bayesian approach, by 

quality here we mean an observation that will have a large impact on the ranking and differentiation 

amongst the posterior probabilities of the various competing hypotheses. In general, this occurs 

when the differences between P(e|h) and P(e) are significant. In the falsificationist approach, quality 

refers to the testing of the hypothesis’s bold predictions that can readily expose it to falsification (i.e. 

where P(e|h) is zero for some h). These are not inconsistent views on the relevance of different 

types of evidence. In short, these distinct philosophical perspectives value the same forms of 

evidence in their approaches to the empirical testing of hypotheses.  

Finally, even an ardent Bayesian scientist and philosopher such as E.T. Jaynes conceded that 

numerical quantification of the probability of a hypothesis is, in real life, usually beyond us: 

“In practice, the situation faced by the scientist is so complicated that there is little hope of applying 

Bayes’ Theorem to give quantitative results about the relative status of theories.”124  

In this light, a relative preference for the use of either degrees of corroboration or the posterior 

probability of a scientific hypothesis appears to be of little obvious consequence for how evidence is 

used to determine the degree of confidence in a hypothesis.  

Similarly, both philosophical outlooks prefer simplicity in a scientific hypothesis. In Bayesian terms, 

this preference may be expressed by the postulate that a simple hypothesis will have a higher prior 

probability than a complex hypothesis. In falsificationism, simple hypotheses are preferred to 

complex ones because they are argued to be more falsifiable (as they rule out more) and are hence 

more corrobarable. 

The above observations can be put another. The logic of Bayesian updating is not disputed, and it is 

quite possible for scientists or methodologists to naturally use Bayesian logic qualitatively without 

subscribing to the more ambitious view that the prior and posterior probabilities can be quantified. 

As an example, we can consider the historical curiosity from the 1920s of Henry Ludwell Moore’s 

Venus theory of the business cycle125. This theory proposed that the orbital patterns of the Earth and 

Venus caused a weather cycle which in turn caused the business cycle. It, unsurprisingly, struck 

many of his peers as somewhat fanciful, and a Bayesian logic was implicitly employed in the 

rejection of the relevance of whatever evidence Moore presented: 
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“Even if a statistical test should yield a very high correlation, the odds thus established in favour of 

such a hypothesis would have to be heavily discounted on account of its strong a priori 

improbability.”126 

This is an example of how, when scientists have background information that is not directly related 

to the evidential data, the Bayesian approach provides an explicit mechanism – the prior probability 

- for incorporating this information into the assessment of the hypothesis. There is no parallel 

explicit mechanism for incorporating this qualitative background information into falsificationist 

methodology. Nonetheless, it would be difficult to maintain the view that falsificationist 

methodology would fail to establish that the Venus theory is a weak one (for example, it is not part 

of a deductive system that offers direct or indirect empirical corroboration). 

The Bayesian approach is, in an epistemological sense, more ambitious than falsificationism – it 

promises more. As noted above, one of its promises is that it provides a means, at least in theory, of 

ranking competing hypotheses. A limitation of Popperian falsificationism is that there could be many 

competing hypotheses that have not (yet) been falsified by the available evidence. In such 

circumstances, which hypothesis should be used? The falsificationist would argue that the theory 

that has been corroborated to the higher degree should be the preferred one. But as degrees of 

corroboration are not always numerically orderable, this may not imply a unique ranking. Of course, 

in such a case a falsificationist may argue that the rankings of posterior probability obtained by the 

Bayesian calculations are arbitrary and unreliable. And from the above reading, it seems likely that 

both Popper and Jeffreys would agree that it is necessary to conduct further well-designed 

experiments that are capable of further differentiating between (and ideally falsifying some of) the 

competing hypotheses. 

Statistical Testing Again 

A parallel to the above falsificationism-Bayesianism debate around the testing of scientific 

hypotheses arises in the broader context of statistical inference. We saw above that Popper 

advocated the use of a significance test as a means of ‘practical falsification’ in the case where the 

deductions of the scientific hypothesis were probability statements (as such statements cannot be 

logically falsified). We noted that this amounted to a statistical significant test or hypothesis test, 

which is a well-established technique of statistical inference that was first developed by Sir Ronald 

Fisher in the early decades of the twentieth century.  

Significance testing, as developed by Fisher and Pearson in the first half of the twentieth century, 

can be viewed as a form of practical falsificationism that has much wider application than the testing 

of scientific hypotheses. In significance testing, as in the falsificationist scientific method, no 

probability of ‘truth’ is ever estimated for the null hypothesis, but the hypothesis is rejected as false 

if the evidence against it is sufficiently strong (that is, if the probability of the evidence arising given 

the hypothesis is true is sufficiently small).  

The fallibility of significance testing is fundamental and unavoidable. This was explicitly 

acknowledged by Fisher in his advocacy of the approach. As he put it when discussing the logic of 

significance testing: “Either an exceptionally rare chance has occurred, or the [null hypothesis] is not 

true”127. He also wrote: 

“If we use the term rejection for our attitude to such a hypothesis [one that has been rejected in a 

significance test], it should be clearly understood that no irreversible decision has been taken; that, 
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as rational beings, we are prepared to be convinced by future evidence that appearances were 

deceptive, and that in fact a very remarkable and exceptional coincidence had taken place.”128 

The above remarks, made in the context of statistical hypothesis testing in general, are very similar 

to those that arose in the discussion of the ‘practical falsification’ of probabilistic scientific 

hypotheses. There it was noted that the test is fallible and that a rejection or practical falsification 

must be provisional as it was always theoretically possible for further evidence to arise that logically 

demands the cancellation of the rejection. 

The significance testing approach to statistical inference was founded on a scepticism about the 

ability to obtain rational (non-arbitrary) estimates for the probabilities of a statistical hypothesis 

being true. Quoting Fisher a final time: “While, as Bayes perceived, the concept of mathematical 

probability affords a means, in some cases, of expressing inferences from observational data, 

involving a degree of uncertainty, and of expressing them rigorously, in that the nature and degree 

of the uncertainty is specified with exactitude, yet it is by no means axiomatic that the appropriate 

inferences, though in all cases involving uncertainty, should always be rigorously expressible in terms 

of the same concept”129.  

Bayesians could retort that the Fisherian approach inevitably involves at least as much arbitrariness 

as the Bayesian approach that Fisher objects to in the above quotation. In particular, the choice of 

null hypothesis, the choice of test statistic and the choice of significance level are all, to some 

degree, arbitrary, and all can alter the conclusion of a significance test130.  

Ultimately, conjecturing from a finite set of observations to a universal generalisation or other 

inference about a population must involve some assumptions, some form of judgement, and 

perhaps some arbitrary choices. Beyond the philosophical debates, it is clear that vigorous empirical 

testing, simplicity in hypotheses, and a recognition of the fallibility of scientific knowledge are all 

virtues of the scientific method that both objectivists and Bayesians provide a rationale for (and can 

each claim as their own!). 

2.3 Causation and scientific explanation 
So far, our discussion of science and its methods suggests that the aim of science is to reliably and 

objectively identify and accurately quantify recurring relationships between observable phenomena, 

and to describe those relationships as economically and simply as possible. The recurring nature of 

these relationships allows us to infer from the observed to the unobserved. Such inferences will not 

be infallible, but can create a form of knowledge that is capable of very reliable predictions within 

understood domains. But, as powerful as this descriptive and predictive knowledge may be, this 

description of scientific knowledge seems to be missing an important dimension: isn’t science about 

explaining why as well as describing what?  

This leads us to the vexing subject of scientific explanation and causation: what does it mean to 

explain a relationship between two phenomena? To identify the cause or causes of a type of 

occurrence? Can it be done and, if so, how? Ernest Nagel provided a seemingly a simple definition.  

To identify something’s causes means ‘ascertaining the necessary and sufficient conditions for the 
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occurrence of phenomena’131. The following discussion explores this idea further, and highlights 

some of the philosophical debate that surrounds this topic.  

Following Nagel’s definition, we may identify C as a necessary and sufficient cause of some effect E if 

the occurrence of C is always followed (in time132) by the effect E, whilst the absence of C, all other 

things being equal, which we will refer to as not-C, is always followed by the absence of E, which we 

will denote here not-E. In passing, we may note that if E always occurred when C occurred, and E 

sometimes occurred when C did not occur, this is known as ‘causal overdetermination’, and means 

one of a number of different causes may be sufficient to cause E. In this case C is a sufficient cause 

but is not necessary.  

The values and states of the other conditions and circumstances referred to as ‘all other things’ in 

the previous sentence can be denoted by K for ease of exposition. K is sometimes referred to by 

philosophers as the causal field. It essentially means all causally relevant background. K can include 

factors that are naturally unchanging (e.g. the gravitational constant) or those that are assumed to 

by unchanging within a given theory (e.g. the money supply) or those that are assumed to be 

unchanging in a very particular way, that is, to be absent (e.g. friction). C may be followed by E (and 

not-C followed by not-E) under all possible conditions of K, or only for some sub-set of possible 

values of K. The above definition of the necessary and sufficient cause, C, has assumed that the 

relationship applies for all possible values of K. If the relationship holds for only some K, then C is not 

sufficient, and may or not be necessary, for the occurrence of E.  

This merely describes a relationship between two phenomena, C and E, and the conditions K under 

which the relationship does and does not hold. To be recognised as a causal relationship or scientific 

explanation, we might also expect some explanation of why E is always followed by C, and why not-C 

is always followed by not-E. For example, it has been known for many centuries that the ebb and 

flow of the tides follows a pattern related to the lunar cycle. But there was no good answer to the 

‘why’ question until Newton’s theory of gravitational attraction133. 

Correlation is not causation…so what is causation? 

What does a good scientific explanation look like? As we shall see below, one answer is that a 

scientific explanation is of the form of a logical deduction that shows that E must necessarily follow 

C, given some stated premises. In the absence of such an explanation, we merely have a description 

of a correlation. And is all statistics students know, correlation is not causation.  

The distinction between a causal explanation and a ‘mere’ empirical generalisation has been the 

subject of philosophical discourse for centuries, and especially since Hume134. In the early twentieth 

century, the Cambridge philosopher W.E. Johnson referred to these two forms of statement as 

‘universals of law’ (a causal explanation in the form of a logically deduced law-like statement) and 

‘universals of fact’ (empirically-observed recurring relationships)135. But according to Hume, there 

really is no distinction between these two forms of statement – that is not to say that effects do not 
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have a cause, but rather that the fundamental cause is unobservable and essentially unknowable. 

Our knowledge is only capable of determining the empirical observation of a ‘constant conjunction’ 

of two phenomena. According to Humean epistemology, the notion of causal explanation is merely 

psychological rather than epistemological. Deductive scientific theories and laws of nature do not 

depict the truth; they merely provide succinct and efficient ways of describing the empirical 

regularities that we observe, nothing more. That is, ‘universals of law’ are just efficiently statements 

of ‘universals of fact’. This is the nature and limit of scientific knowledge, according to Hume. 

Consider again the Newtonian explanation of the tides given above from this perspective. A Humean 

rebuttal of the Newtonian explanation might argue that Newton’s laws identified and quantified the 

phenomenon of gravitational attraction, but they did not explain why this phenomenon exists. A 

law-based explanation is required for the explanatory law, and so we reach an infinite regress. The 

distinction between an empirical generalisation and scientific explanation, it may be argued, is 

therefore a difference of degree rather than kind – explanation becomes hierarchical, like 

Braithwaite’s model of scientific hypotheses. And the Humean philosopher would argue that the 

ideal of causal explanation can never be obtained. 

A school of philosophers has maintained Hume’s empirical scepticism in modern times. Indeed, it 

was probably the dominant philosophical outlook on scientific explanation until the middle of the 

twentieth century and the influential work of the logical empiricists. For example, writing in the early 

20th century, Bertrand Russell famously dismissed the philosophical notion of causality as ‘a relic of a 

bygone age, surviving like a monarchy, only because it is erroneously supposed to do no harm’136. 

But modern philosophers have increasingly found this position to be inadequate. In a nutshell, 

Hume’s empirical scepticism sets the linguistic bar for ‘causation’ and ‘explanation’ at a very high 

level – it is used to mean certain knowledge or proof of the reason why; and a less severe definition 

may usefully serve to recognise important forms of imperfect explanation. 

The Deductive-Nomological Model of Scientific Explanation 

Hempel and Oppenheim in 1948, in a highly influential paper that re-ignited philosophical interest in 

the topic of scientific explanation and causation, argued that a legitimate scientific explanation must 

feature a logical deduction from a general or universal law that has empirical content137. This 

became known as the deductive-nomological model of scientific explanation. A quite similar position 

was advocated a few years later by the Austrian logical empiricist Herbert Feigl, who also defined 

causation as something delivered by a scientific law: “Causation is defined in terms of predictability 

according to a law (or, more adequately, according to a set of laws).”138 

So, from this logical empiricist perspective, the general structure of the scientific explanation of a 

specific event will require as premises a set of initial conditions or circumstances together with some 

form of (empirically corroborated) law(s) and / or generalisation(s) from which the occurrence of the 

event, E, can be deduced. Feigl, Hempel and Oppenheim viewed explanation and prediction as 

logically equivalent and only different in terms of the direction of time in which they worked – that 

is, explanation (of past observations of some phenomena) is prediction (of the future behaviour of 

the phenomena) in reverse, and vice versa. This is sometimes referred to as the symmetry thesis. It 

is a point that is arguably more germane to the social rather than natural sciences, and we will 

therefore return to this point in Chapter 3. 

 
136 Russell (1918), p.180. 
137 Hempel and Oppenheim (1948) 
138 Feigl (1953), p. 408. 



From as early as Aristotle, some philosophers have argued that the premises of an explanation must 

be ‘known to be true’139. As has been discussed above, the laws produced by scientific theories can 

be used to make deductive predictions about the behaviour of phenomena. Virtually all philosophers 

of science would agree with that. And whilst scientific laws are developed by deductive logic, these 

laws are not known to be certainly true as their premises may not be correspond precisely with the 

‘real-world’. So the epistemic quality of scientific explanation appears to inevitably occupy a sort of 

halfway house between, on the one hand, the ‘pure’ deductive knowledge that arises from premises 

known to be true in the sense of pure logic or mathematical truths, and, on the other hand, the 

mere inductive enumeration of positive instances (which Hume’s problem of induction argued was, 

on its own, epistemologically worthless).  

Causation and a Uniformity of Nature Postulate  

If we do accept the use of empirically-corroborated deductive theories as scientific explanations, it is 

important to note that, when used for prediction of future phenomena, it is necessary to invoke 

some form of principle of causality. Taking a famous example of this form of assumption, John Stuart 

Mill invoked a principle of the uniformity of nature as follows:  

“There are such things in nature as parallel cases; that which happens once, will, under a sufficient 

degree of similarity of circumstances, happen again.”140 

Arguably, Mill’s principle merely provides a circular definition for what constitutes ‘a sufficient 

degree of similarity of circumstances’ – that is, they are the circumstances in which something that 

has happened once will happen again. Nonetheless, its essence is clear: scientific knowledge relies 

on some form of uniformity of nature in time and space, and, given such uniformity, it is reasonable 

to assume the causes that led to given effects in the past will do so again in the future.  

This uniformity of nature postulate was further expanded upon by John Venn towards the end of the 

nineteenth century, when he described it as the assertion that: ‘wherever any two or more 

attributes are repeatedly found to be connected together, closely or remotely, in time or in space, 

there we have a uniformity’141. 

Again, we might question how we know that these attributes are always bound together. This is 

really Hume’s problem of induction again. On this Venn was clear, the problem cannot be solved, 

only assumed away: 

“I am very decidedly of the opinion that the difficulty does not admit of any logical solution. It must 

be assumed as a postulate, so far as Logic is concerned, that the belief in the Uniformity of Nature 

exists, and the problem of accounting for it must be relegated to psychology.”142 

The uniformity of nature postulate makes a form of inductive inference from observed to 

unobserved possible. It enables the link between causation, explanation and prediction. If we take 

this position, then well-tested and accepted scientific theories will generally be accepted as offering 

scientific explanations of the behaviour of related phenomena. Again, this is fundamentally 

consistent with both the falsificationist and Bayesian philosophies of scientific method discussed in 

Chapters 2.1 and 2.2 – indeed, it is the essence of what science does. 
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With the acceptance of this broader definition of scientific explanation, there are a couple of 

(related) key dimensions in which the quality of an explanation may be assessed. One dimension is 

the degree of empirical confirmation for the causal laws that are used in the explanation. 

Falsificationists and Bayesians may differ in their perspective on how to describe empirical 

confirmation, but both schools would generally argue that it is at least sometimes possible to order 

the degree of confirmation of a theory, and that the empirical testing of the theory is fundamental 

to the scientific method.  

The second important dimension in the quality of a scientific explanation is the generality of the law 

or system of laws from which the explanation is deduced. As discussed in Chapter 2.1, a deductive 

system can be thought of as a hierarchy, with the most general (and theoretical) hypotheses at the 

top, potentially leading to many varied lower level hypotheses that can each be directly empirically 

tested. The more general and higher level the system of hypotheses is that delivers the deductive 

explanation, the greater the logical strength of the deductive system and the more satisfactory the 

explanation. This notion of logical strength is related to the desideratum of simplicity that is 

common across virtually all forms of philosophy of science – a more powerful explanation is one that 

can explain more with less. Furthermore, these two dimensions of the quality of a scientific 

explanation are related – where higher level hypotheses engender many lower level hypotheses, the 

empirical confirmation of each lower level hypothesis can be viewed as indirect evidence in support 

of the others. 

The above discussion of causation has only considered the simplest of settings: in particular, it has, 

at least implicitly, suggested that every effect has a cause and so the difficulty merely lies in knowing 

what that cause is (causal determinism); and also we have thus far assumed that causation is 

universal - that is, the same causal circumstance(s) always lead to the same effect. We now explore 

the philosophical consequences of generalising beyond these two simplifying (and related) 

assumptions. 

Causation and Determinism  

Determinism is the philosophical idea that complete knowledge of a physical system will allow all the 

behaviour of all phenomena therein to be uniquely determined for all time (past, present and 

future). Determinism implies all effects have a cause that it is at least theoretically knowable.  

Classical mechanics was developed in full accordance with a deterministic view of the physical world. 

For example, given knowledge of the current mechanical state of a system (the initial mass, velocity 

and position of the objects of a system together with the forces acting upon that system), Newton’s 

laws of motion uniquely determine the mechanical state of the system at any future time. It was the 

explanatory power and extraordinary predictive reliability of classical mechanics that inspired 

Laplace’s enthusiastic and famous embrace of determinism:  

“An intelligence knowing all the forces acting in nature at a given instant, as well as the momentary 

positions of all things in the universe, would be able to comprehend in one single formula the 

motions of the largest bodies as well as of the lightest atoms in the world.”143 

In this setting, uncertainty or merely probabilistic relations are only expressions of human ignorance. 

Perfect knowledge implies perfect foresight (and perfect understanding of the past). The precise 

determinism of Newton and Laplace’s classical mechanics was somewhat muddied by the profound 

new developments that emerged from late 19th century physics. In particular, the development and 

application of statistical mechanics in highly successful theories across fields such as 
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thermodynamics and the behaviour of gases represented an important departure from the classical 

methods. Statistical mechanics, like classical mechanics, was based on Newton’s laws of motions. 

However, statistical mechanics applied them to aggregate numbers of molecules instead of 

individual objects. The mechanical states of huge number of molecules could not be individually 

specified, and so the initial state of the system was instead specified by assuming a probability 

distribution for the states of the molecules and a stochastic process for how these states changed 

over time (such as Brownian motion).  

Whilst statistical mechanics made explicit use of probabilistic assumptions, its foundation was still 

the deterministic laws of classical mechanics. Probabilities entered into the analysis simply because 

it was not practical to specify individual states at the molecular level. The introduction of quantum 

theory in the early 20th century, and its impressive empirical corroboration across a wide range of 

scientific fields, produced a more fundamental challenge to the notion of mechanical determinism 

and causation. Whilst probability entered statistical mechanics as a matter of practicality, in 

quantum theory probability played an essential and unavoidable theoretical role. According to this 

theory, some phenomena of the physical world (and therefore the laws that describe them and their 

relations with each other) are irreducibly statistical. Complete knowledge of the physical system 

could therefore no longer deliver perfect foresight or a deterministic description of all phenomena 

at any moment in time. Quantum theory describes a world where not all effects have a knowable 

cause. 

Probabilistic Causation  

In our discussion so far, we stated that C was a cause of E if, in some given a set of known conditions, 

K, C is always followed by E, and not-C is always followed by not-E. We now consider the case where 

C makes the occurrence of E merely more probable. Let’s refer to this idea as probabilistic causation. 

Perhaps surprisingly given the extensive use of probability in scientific theories since the nineteenth 

century, the philosophical study of probabilistic causation didn’t really get underway until 1962 

when Hempel attempted to extend his (deterministic) Deductive-Nomological (D-N) model into a 

probabilistic setting144. 

Philosophers generally consider that, like deterministic causation, probabilistic causation also 

requires an empirically-corroborated scientific law to be used in a scientific explanation. However, in 

this case, the scientific law is a statistical law rather than a universal law (for example, the kinetic 

theory of gases deduces a probability distribution145 for the velocity of particles in idealised gases). 

Therefore, in some instances of C, C may be followed by not-E, and not-C may be followed by E. But, 

given C, the occurrence of E is more probable than it is given not-C. That is, P (E|C) > P (E | not-C).  

In this case, C is neither a necessary nor sufficient condition for E. Note that, under this definition, 

the conditional probability of E occurring given C could be very low in absolute terms. Even in such 

cases, any difference between conditional and unconditional probabilities would be enough to deem 

C to be causally relevant. But this is a matter of philosophical taste. When Hempel developed 

probabilistic causation using statistical rather than universal laws in 1962 (which he called the 

inductive-statistical (I-S) model of explanation), he insisted a ‘high’ probability must be generated for 

the effect, E, for C to be considered a cause. In contemporary philosophy of science, the 

requirement for a ‘high’ probability (rather than merely an increase in the probability resulting from 

the presence of C), is generally regarded as unnecessarily restrictive (and, in later years, Hempel 
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himself also converted to the view that probabilistic causation merely requires an increase in the 

conditional probability, without reference to its absolute value)146. 

Note that the specification of K may have a crucial impact on how the conditional probability of E 

changes in the presence of C – the impact of C on the conditional probability of E may even reverse 

direction under different values for K. Probabilistic causation can therefore become quite counter-

intuitive if all the relevant conditions K are not identified and held constant. There are some famous 

examples. For instance147, birth control pills are known to contain blood clotting chemicals that 

increase the risk of thrombosis. And yet empirical studies show that those who take the pill have a 

lower probability of developing thrombosis than those who do not (relative to a control group of 

women of similar age, etc.). The reason for this is that pregnancy increases the probability of 

thrombosis. If K includes the state of pregnancy (i.e. either all are pregnant; or none are pregnant), 

then the result will show that the pill increases the probability of thrombosis. But if this factor is not 

held constant, the opposite result will arise, because the birth control pill-taking population has such 

a lower proportion of pregnant people than the control group. 

The above case where probabilistic relationships are deduced from a scientific theory can be 

contrasted with another case where there is no theoretical causal argument but merely an (as yet) 

unexplained empirical statistical generalisation. That is, it might be possible to establish an empirical 

probabilistic relationship between C and E, and between not-C and not-E, without having a 

deductive theory that explains why it occurs. Most philosophers of science would argue this does 

not constitute a scientific explanation.  

This type of situation – the observation of some empirical association without a fundamental 

theoretical explanation – is especially common in the social sciences and we will discuss this point 

further in that particular context in Chapter 3. However, the establishment of these empirical 

relationships can often be a crucial point in the development of scientific theories in the natural 

sciences too – these are the empirical observations that can motivate the development of a theory.  

A well-known example would be Boyle’s Law, which states that the pressure of a given mass of gas is 

inversely proportional to its volume at a fixed temperature. This law is a statement of an empirical 

relationship, it is a description, not a scientific theory that offers an explanation for why. The 

relationship it describes has since been logically deduced in the kinetic theory of gases, thus 

providing the scientific explanation. 

This distinction between an empirical generalisation or experimental law and a scientific theory, 

naturally prompts the question – is there a clear distinction between these two concepts? The 

essential difference between them is that the empirical generalisation is based on entirely 

observable and empirically determinable phenomena. A scientific theory, on the other hand, will 

entail a level of abstraction, typically in the form of variables and phenomena that are ‘theoretical’ 

or at least not directly observable.   

Whilst the essence of this distinction would seem intuitive, it may be less sharp in real-life. It is quite 

difficult to measure an empirical generalisation in a perfect theory vacuum. The example of Boyle’s 

Law above requires clarity about what we are measuring – what is pressure, temperature and 

volume? The nature and behaviour of these phenomena may themselves be the subject of scientific 

theories. Nonetheless, the distinction between the measurement of empirical relationships and the 

explanation (or, if a sceptical empiricist, a more efficient description) of those relationships through 
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fundamental theoretical ideas is an important one when considering the different stages of the 

scientific method, and, in particular, how they differ across the natural and social sciences. 

The epistemological ‘strengths’ of an empirical generalisation and a scientific theory also differ. The 

empirical generalisation may be taken as a statement of reality that is unchanging (at least in the 

stationary environment which is generally found in the natural sciences, perhaps less so in the social 

sciences). The scientific theory that explains or describes the generalisation, in contrast, is always 

considered fallible, and subject to revision and improvement. 

Probabilistic Causation and Indeterminism 

Recall from our discussion of deterministic causation above that the state not-C was defined as one 

where all other factors and circumstances, K, are the same as in state C. This creates a potential 

philosophical difficulty for probabilistic causation. If all causally-relevant conditions are exactly the 

same, what makes the relationship between C and E probabilistic rather than deterministic? One 

interpretation of probabilistic causation is that some of the causal field, K, is varying in an 

uncontrolled way. These variations must be random, otherwise they would be identified in the 

causal structure. 

If we think of cause as a disposition or propensity, then the specification of K in probabilistic 

causation becomes analogous to the reference class in objective probability, and this philosophical 

difficulty is similar to the reference class problem discussed in Chapter 1 - holding the causal field 

entirely fixed is analogous to a reference class of 1, and implies determinism. And, as in the 

reference class problem, an epistemic form of solution may be offered. That is, the reason the 

causation is only probabilistic rather than deterministic, is because we do not fully know what 

variables are relevant to the causal field, K, and what values they are taking from one instance of C 

to the next. This implies that the probabilistic version of causation and explanation is an incomplete 

version of the deductive-nomological explanation: that is, with complete knowledge of the causal 

field, K, the causal relation between C and E is a deterministic one.  

But the epistemic argument that probabilistic causation is always a merely incomplete version of 

deterministic causation assumes a deterministic world. In an indeterministic world where some 

relationships between physical phenomena are irreducibly statistical, it would not be possible to 

ever know the values of the entire causal field at any moment in time (quantum theory’s Heisenberg 

uncertainty principle would be an example of this – it states that it is theoretically impossible to 

simultaneously determine the current precise state of both the position and momentum of 

elementary subatomic particles, and so the particle’s current mechanical state must have a 

probabilistic rather than deterministic description). In this setting, probabilistic causation is 

unavoidable. 

A Hierarchy of Causal Relationships? 

Given the hundreds of years of philosophical controversy over whether causation exists in any 

knowable sense, it is perhaps reckless to attempt to rank types of causation by their causal strength. 

But the above discussion suggests a form of hierarchy of causation may be intuitively possible, which 

is summarised below in order of decreasing strength: 

• Necessary and sufficient conditions, C, and laws deduced from self-evidently true postulates 

(e.g. Pythagoras’ Theorem and Euclidean geometry) together deductively imply a certain 

effect, E. This we might call deductive knowledge. 

• Necessary and sufficient conditions, C, and scientific theories that can be regarded as 

empirically confirmed and hence probably true, at least within some domain of application, 



(e.g. Newtonian laws of motion) together deductively imply a certain effect, E. This is 

deterministic causation. 

• Conditions, C, and scientific theories that can be regarded as empirically confirmed and 

hence probably true, at least within some domain of application, together deductively imply 

that an effect, E, is probable but not certain, and more probable than in the case of not-C 

(e.g. theories of genetics and hereditability). This is probabilistic causation. 

• Conditions, C, and an empirical generalisation of a deterministic or probabilistic relationship 

that is not explained (e.g. Boyle’s Law prior to the kinetic theory of gases) inductively implies 

an effect, E. This is an inductive generalisation and is not a form of causal explanation.  

2.4 Realism and instrumentalism 
Our brief survey of some major topics in philosophy of science next considers scientific realism and 

its counterpart anti-realism or instrumentalism148. Philosophical realism refers to the metaphysical 

idea that the real world exists independently of the observer. Its philosophical counterpoint is 

idealism, which contends that nothing exists (or, perhaps, can be presumed to exist) except for the 

mind of the observer, such that the external world is essentially a mental construct. There are 

various schools of idealism with differing degrees of commitment to the idealist concept – solipsism 

is an extreme version that believes that the only thing we can know exists is our own mind; 

phenomenalism is a variant of idealism that says nothing can be presumed to exist other than what 

can be reduced to a description of our own sensations. The reader may be relieved to hear that we 

shall not be attempting a detailed treatment of these metaphysical perspectives. Instead we will 

focus on realism and its counterparts in the specific context of the scientific method. 

Scientific theories will generally postulate a model of reality that is idealised, incomplete and of 

applicability only within some limited domain. The modeller’s clichéd phrase that ‘all models are 

wrong, some are useful’ also applies to virtually all scientific theories. Philosophers of science hold 

different views about the extent to which the realism of a theory’s premises matter. A scientific 

realist will generally hold that scientific theories should be interpreted literally (including in their use 

of theoretical or unobservable entities) as attempted descriptions of reality. A realist would hold 

that a theory is either true or false, although it may only be possible to determine its truthfulness to 

a degree of probability (which may or may not be quantifiable), and they may accept the theory is 

only an attempted approximation of reality. So, to the realist, a scientific theory attempts to use true 

premises to deduce empirically accurate conclusions. 

An instrumentalist, on the other hand, would adopt a converse view by arguing that the purpose of a 

scientific theory is not to provide a description of reality - rather, it is to make useful predictions 

about a particular range of phenomena that can be empirically tested (‘the object served by the 

discovery of such laws is the economy of thought’ in Karl Pearson’s words149). The instrumentalist 

outlook can naturally be associated with empirical sceptics. And it has been particularly associated 

with the phenomenalist form of idealism, which, as noted above, asserts that the only form of sure 

knowledge is that derived directly from our sensory experience and introspection (though a 

phenomenalist perspective is not necessary to hold an instrumentalist view of scientific theories). 

This has broadly been the position of the historical titans of British empirical philosophy, such as 

David Hume and Bertrand Russell (at least over a part of his career)150, as well as other important 
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philosophers and scientists who have been concerned with probability and its application to the 

scientific method, such as Ernst Mach and Karl Pearson151.  

To an instrumentalist, the truthfulness of a theory’s assumptions as a description of reality is 

incidental rather than of fundamental relevance. And so, to an instrumentalist, a scientific theory 

need not attempt to provide true premises from which to make deductions. The truthfulness of the 

premises are essentially irrelevant to the instrumentalist. Rather, the purpose of the premises and 

theory that builds on them is to provides an inferential device or principle which, when combined 

with some initial conditions, can provide good descriptions of the behaviour of other empirically 

observable phenomena. In this sense, theories are intellectual tools (or instruments) rather than 

models of reality. Nagel described the instrumentalist perspective thus: 

“A theory is held to be a rule or a principle for analysing and symbolically representing certain 

materials of gross experience, and at the same time an instrument is a technique for inferring 

observation statements from other such statements.”152 

Both scientific realism and instrumentalism would seem broadly compatible with the scientific 

method of both the falsificationist and Bayesian varieties (though an instrumentalist would not 

attach a probability to the ‘truth’ of a theory, as the theory’s ‘truthfulness’ is not relevant to the 

instrumentalist). In the hierarchical structure of scientific theories that was set out by Braithwaite 

(see Chapter 2.1), the difference between realism and instrumentalism ultimately boils down to 

whether the scientist regards the theoretical, non-observable terms of the hierarchy’s higher-level 

hypotheses as representative of reality or not. But whichever view is taken has no significant 

consequence for the scientific method as represented by the structure. Indeed, it could be argued 

that the differences between realism and instrumentalism are essentially linguistic and involve 

philosophical hair-splitting. 

There is, however, at least one aspect of scientific output that is fundamentally impacted by the 

question of realism versus instrumentalism: causation and scientific explanation. The definitions of 

scientific explanation developed by the logical empiricists such as Hempe and Oppenheimer 

assumed that the scientific laws at the core of scientific explanation were in fact true. 

Instrumentalists like Mach and Pearson held the view that scientific explanation and the 

identification of causation, at least as defined in Chapter 2.3, is simply not something that empirical 

science can deliver. For realist philosophers like Popper, for whom explanation is one of the 

fundamental goals of science, this was not an ambition that they were willing to forego. 

There are certainly some aspects of scientific practice that support the instrumentalist perspective. 

For example, a scientist may employ two scientific theories which are incompatible (in the sense that 

they both cannot be true descriptions of reality) in two different fields of study, because the scientist 

understands which one provides the most efficient or accurate description of a particular type of 

phenomena. This gives rise to what Nancy Cartwright, the contemporary American philosopher of 

science deemed, ‘a patchwork of laws’. But, equally, there is significant aspects of scientific practice 

that appear to be more aligned with a realist perspective. For example, much experimental research 

is involved in determining whether or not the theoretical entities of a given theory actually exist. A 

purely instrumentalist perspective arguably would not care. 

A realist could argue that the success of science in predicting and explaining phenomena is strong 

testament to the ability of scientific theories to get to the truth of how the world really works. This is 
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sometimes referred to as the ‘no-miracles’ argument – that is, it would be rather miraculous for 

scientific theories to obtain any degree of success if they did not actually approximate reality 

reasonably well. An instrumentalist might counter that the radical (and incompatible) way that 

empirically successful scientific theories of a given phenomenon have changed over historical 

periods of time suggests it would be complacent to assume today’s scientific theories are reliable 

descriptions of reality (philosophers of science have referred to this argument as ‘the pessimistic 

meta-induction’153). But this is not necessarily inconsistent with the realist outlook that the evolution 

of scientific theories represents an ever-improving approximation to reality and an objective idea of 

truth (this would be broadly representative of Popper’s realist perspective). 

100 years ago, the instrumentalist perspective held sway. Even as late as the 1930s, Popper’s 

scientific realism was seen as a major departure from the prevailing orthodoxy. However, in 

contemporary philosophy of science, some form of scientific realism is now the orthodox position, 

with a few notable dissenters (such as Bas Van Fraassen154). This historical shift from 

instrumentalism to realism is perhaps ironic given that the most significant breakthrough in scientific 

theory during this time (quantum theory) seems incapable of realist physical interpretation by either 

scientists or philosophers. Despite the prevailing philosophical orthodoxy of scientific realism and 

the unquestioned scientific success of quantum theory, the ambiguity in the physical interpretation 

of its equation means it is nonetheless the case that “many physicists find it most sensible to regard 

quantum mechanics as merely a set of rules that prescribe the outcome of experiments”155. 

In a nutshell, the instrumentalist perspective is primarily interested in the performance of the theory 

in making useful predictions; but it has hard to see how a scientist can develop a model that can be 

expected to perform well in making accurate empirical predictions if the model is not intended to 

capture some important aspects of reality. As noted above, this topic of realism versus 

instrumentalism may seem to verge on philosophical hair-splitting. But the issues with which it is 

concerned – whether gaps between theory and reality matter; what the main purpose of a scientific 

theory is - are fundamental. These issues can be particularly important in the context of the social 

sciences. The realism / instrumentalism debate may be especially interesting for actuarial science 

when considering the objectives, usefulness and limitations of economic and financial models and 

theories. The topic will therefore recur in Chapters 3 and 4. 

2.5 Post-positivism 
Much of this chapter’s discussion has been derived from the quarter-century or so of extraordinary 

progress in the philosophy of science that occurred between between the mid-1920s and mid-1950s. 

During this period, which featured the logical positivists and logical empiricists as well as other highly 

influential thinkers such as Popper, the recognised modern model of the positive scientific method 

was established. Popper’s falsificationism (and realism); Braithwaite’s model of the hierarchical 

hypothetico-deductive structure of scientific theory, accommodating both theoretical and 

observable terms; Hempel’s deductive-nomological model of scientific explanation; all had been 

developed by the mid-1950s as pillars of a philosophy of science that established science as 

objective and continuously progressive. 

We saw above how falsificationism and Bayesianism both implied a scientific method focused on 

rigorous empirical testing, that values simplicity, and that holds scientific knowledge to be 

fundamentally tentative and fallible rather than certain. Both philosophical outlooks assumed 
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science is conducted by scientists behaving rationally and objectively in the sense that two scientists 

would be expected to conduct themselves in the same way and to reach the same conclusions, 

irrespective of their personal predilections or social context. The implication of this perspective for 

continuous scientific progress is inherently positive. New theories will be improvements on old 

theories - they will be more accurate, more testable, or simpler, or have more generality, whilst still 

containing the information of the old theory. To a realist, science will provide an ever-improving, 

closer approximation to objective reality and truth. To an instrumentalist, science will provide 

reliable empirical predictions of ever-improving accuracy and scope. 

It was noted, however, that even in this established logical, objective framework for scientific 

progress, limitations to testing of ‘compound’ hypothetical structural systems could lead to some 

potential for subjectivity or need for judgement in drawing conclusions from empirical testing. 

Chapter 2.1 noted how the Duhem-Quine thesis introduced a complexity to this process of 

continuous testing and refinement, particularly for advanced sciences. There, the multiple 

hypotheses that would be contained in a given scientific theory created a need for some form of 

professional judgment or even hunch-making on the part of the scientist when deciding which 

hypothesis to reject in the face of some falsifying evidence. Moreover, in this scenario, there may be 

a natural and arguably a logical inclination to choose to reject the hypothesis that was the least 

disruptive at that point in time for the overall deductive system of the particular field of science. We 

discussed how, when taken to its logical limit, this could mean that some hypotheses may become 

essentially unfalsifiable or ‘functionally a priori’ (at least, until further evidence is gathered). 

In the 1960s and beyond, some philosophers of science started to challenge this (predominantly) 

sunny perspective on the positivist scientific method. This did not lead to the emergence of a new 

consensus in the philosophy of science and scientific method. Rather, this ‘post-positivist’ era is 

better recognised as one where a series of philosophers and schools identified some potential 

limitations or caveats that ought to be recognised in the positive model of science that was 

established by the end of the 1950s. 

Popper, the logical positivists and logical empiricists were all primarily concerned with developing a 

logical philosophical framework that could provide a model of how science should be done. This 

work made little direct reference to the actual practice of scientists. The ‘post-positivist’ era of 

contemporary philosophy of science has paid much more attention to describing and explaining how 

and why scientists ‘do’ science. Post-positivist philosophy of science therefore inevitably tends to 

touch more on social sciences such as sociology and psychology; and it may seek its confirmation 

directly from episodes in the history of science. 

Kuhn: Paradigms, Revolutions, Incommensurability and the Growth of Scientific Knowledge 

One of the major themes of post-positivist thought has centred on the ‘growth of scientific 

knowledge’ and, in particular, whether the orthodox positivist view of science as an enterprise that 

makes relentless forward progress was too simplistic and optimistic. Thomas Kuhn, an American 

historian and philosopher of science, made a major contribution to the ‘growth of knowledge’ 

debate with his ground-breaking 1962 book The Structure of Scientific Revolutions156. This work 

might be considered as the first major break from the logical empiricist orthodoxy described above. 

Kuhn considered more fully the complexities that arise when scientists obtain falsifying evidence for 

advanced scientific systems. He viewed Popper’s characterisation of falsification as a mere 

‘methodological stereotype’. Kuhn proposed an alternative model of scientific progress that paid 

particular attention to the (current and historical) working practices of scientists and the social and 
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cultural norms and incentives that can be associated with them (one might say that, in a way very 

distinct from Popper or Jeffreys, Kuhn was writing about the sociology of scientific communities157). 

Kuhn argued that scientific activity in the real world could be sorted into two distinct categories: 

normal science and revolutionary science. Normal science, which Kuhn argued was what the vast 

majority of scientists spent most of their time on, was concerned with incremental improvement 

and refinement of well-established scientific theories. Revolutionary science, on the other hand, was 

concerned with displacing and replacing major theoretical systems. At the core of this distinction 

was the idea of a ‘paradigm’. Kuhn’s wide-ranging and inconsistent use of the term attracted some 

criticism, but a paradigm was essentially “the entire constellation of beliefs, values, techniques and 

so on shared by the members of a scientific community”. Normal science was concerned with 

working within the paradigm, refining it and developing its applications. Revolutionary science was 

work that challenged the accepted beliefs of the paradigm and ultimately could lead to the 

replacement of the existing paradigm with a new one. Importantly, Kuhn argued that the new 

paradigm may be fundamentally inconsistent with the old one (in ways to be further discussed 

below). 

In the context of the above discussion, one of the most important points of Kuhn’s argument is that 

the social and cultural norms and incentives that scientists work amongst may reduce the objectivity 

of scientific output. Most notably, Kuhn argued that scientists may be reluctant to give up on 

paradigms easily, even when have been objectively falsified. This resistance may partly be a practical 

matter – there is arguably little point in rejecting a theory until a new and better one has been 

adequately developed. More interestingly, Kuhn argued that the leaders of the scientific community 

would be incentivised to resist the rejection of the paradigm in which they are experts. After all, 

rejection of the paradigm would imply that their work and expertise were becoming irrelevant and 

would be superseded by that of others. Thus, paradigm-shifts may take time (a generation or longer) 

and may involve significant resistance and professional controversy as they occur158. 

The notion that scientists may become irrationally or dogmatically attached to the particular groups 

of theories that they were experts in was probably not an especially new or controversial one to 

working scientists. For example, Max Planck, the theoretical physicist most associated with the 

original development of quantum theory, and hence intimately familiar with revolutionary science, 

wrote prior to his death in 1947: 

“An important scientific innovation rarely makes its way by gradually winning over and converting its 

opponents: it rarely happens that Saul becomes Paul. What does happen is that its opponents 

gradually die out and that the growing generation is familiarised with the idea from the 

beginning.”159 

As is so often found in the history and philosophy of science, big ideas have a long and complicated 

provenance. Kuhn, however, placed Planck’s common-sense view of practising scientists within a 

formal philosophical framework and explored its logical consequences.  
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Kuhn further argued that when a paradigm-shift eventually does take place (which could be decades 

after the first falsifications of the old theory are documented), the theories of the new paradigm 

could be so different to the previous one as to be ‘incommensurate’ with it. This means the terms of 

the theories of different paradigms may not be mutually translatable – for example, ‘mass’ in 

Newtonian mechanics means something different to ‘mass’ in Einstein’s theory of relativity (though 

it may be argued that incommensurate higher-level hypotheses need not lead to incommensurate 

lower-level hypotheses). Incommensurate theories may not be directly comparable. It may be the 

case that the new paradigm provides new or better explanations for some empirical phenomena, 

but at the same time is not capable of explaining some of the empirical behaviours that the previous 

paradigm explained well. Consequently, the old theory cannot always be merely regarded as an 

inferior special case or approximation of the new one. 

This notion of incommensurability is at odds with Popper’s vision of new theories as incremental 

improvements on old theories where the new theory offers something better and nothing worse. 

Popper readily conceded that the new theory may provide only a ‘good approximation’ to some of 

the valid empirical content of the old theory. But this contrasted with the view expressed by some 

post-positivists (such as Feyerabend, who is discussed further below) who argued that history 

demonstrated that the overlap between the old and new theories actually tended to be quite small. 

This implies that scientific knowledge may not always be cumulative and that scientific progress may 

not inevitably move in a uniformly forward direction. Instead, a new theory, although an 

improvement in at least some respects over the old theory, may ultimately prove to have been a 

wrong turn. Moreover, it could take generations to reverse back out of a paradigmatic cul-de-sac. 

Lakatos: A Third Way? 

The work of Imre Lakatos can be viewed as an attempt at a middle ground between the philosophies 

of Kuhn and Popper. Lakatos proposed an alternative model to Kuhn’s paradigms and the bipolar 

world of normal and revolutionary science in his characterisation of a ‘scientific research 

program’160. Lakatos’ research programs attempted to recognise some of the conventions of 

scientific communities (in the form of negative and positive heuristics which determined the type of 

activities that were acceptable within a community), whilst at the same time rejecting the potential 

for subjectivity and social psychology that characterised Kuhn’s perspective.  

Lakatos’ scientific research program was a group of interrelated theories. The research program had 

a ‘hard core’ of key assumptions that were regarded by the scientific community as essentially 

irrefutable. When falsifiying empirical results are produced, it is the auxiliary assumptions outside 

the hard core that are changed first. The program would reach a crisis when the changes required to 

the auxiliary assumptions became ‘degenerative’- that is, the changes to the assumption were 

essentially ad hoc, and failed to provide any new empirical content. 

Lakatos’ scientific research program can be viewed as broadly consistent with Kuhn’s description of 

scientific practice: Kuhn’s paradigm and Lakatos’ hard core share obvious similarities, as do Kuhn’s 

revolutions and Lakatos’ crises. But the scientific research program can also be viewed as being 

consistent with Braithwaite’s hierarchical structure of scientific theory as a model of the logical 

relationships between a large system of interrelated theories. Decades before Lakatos, Braithwaite 

had argued that it was logical that a system of theories would be altered in the least disruptive way 

when faced with falsifying results (see Chapter 2.1 and the section on Falsification of Systems of 
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Theories). And Pap’s ‘functionally a priori’ higher-level hypotheses – the highest levels of 

Braithwaite’s hierarchy - sound very similar to the scientific research program’s hard core.  

Braithwaite and Pap’s arguments did not require any appeals to sociology or psychology. 

Nonetheless, both the Braithwaite-Pap and Lakatos perspectives provide an explanation of how 

science was conducted as a rational methodological system that promoted the positive growth of 

scientific knowledge in a way that was more complex than the ‘naïve falsificationism’ originally 

advocated by Popper. Perhaps both perspectives can offer some insight into the historical and 

current working practices of scientific communities. After all, they are not mutually exclusive. 

Reluctance on the part of a scientific community to reject its scientific paradigms or the hard core of 

its scientific research programs may be both an inevitable logical consequence of the Duhem-Quine 

thesis in the sense discussed by philosophers such as Braithwaite and Pap; and, at least in part, also 

a natural sociological consequence of the vested interests that the leaders of a scientific community 

inevitably have.  

Feyerabend’s Radical Contribution to Post-Positivism 

Some other philosophers of science of the post-positivist era have been notably more radical than 

Lakatos in their rejection of the key tenets of the positive empirical scientific method. Perhaps the 

most radical of these philosophers is Paul Feyerabend. Feyerabend collaborated with Kuhn at 

Berkeley in the late 1950s. There is some significant consistency in their views, but Feyerabend is 

undoubtedly more revolutionary in his perspectives and prescriptions. His most influential book, 

Against Method, was first published in 1975. There, Feyerabend argued that, in the real world, 

scientific activity was too idiosyncratic and complex to be well-represented by any philosophical 

model of scientific method. He therefore argued for a sort of methodological anarchy: anything 

goes. 

We noted earlier that some have challenged the idea that observations can be completely detached 

from the theory which used them. Feyerabend advocated an extreme version of this ‘theory-

dependence thesis’. He argued that the meanings of virtually all forms of scientific observation are 

highly dependent on the scientific theory that uses those observations: “the interpretation of an 

observation language is determined by the theories which we use to explain what we observe, and it 

changes as soon as these theories change.”161  

A corollary of this view of observation as deeply theory-laden is that alternative (and incompatible) 

theories may be necessary merely to illustrate that a given theory is refuted by existing 

observational data162. Thus, to Feyerabend, the regimented logic of falsificationism, where one 

theory reigns supreme until it is shown to be false, is an anathema – according to both Feyerabend’s 

philosophy of knowledge and his interpretation of the history of science, science prospers in a state 

of chaotic competition amongst incommensurate alternative theories, all of which are capable of 

being falsified by some interpretation of the available evidence (“A strict principle of 

falsification…would wipe out science as we know it and would never have permitted it to start.”163). 

Theory-laden observation makes the incommensurability of alternative theories inevitable (theories’ 

predictive performance relative to some empirical observations cannot be usefully compared if the 

observations themselves are given different interpretations by the respective theories). But 

Feyerabend regarded incommensurability as an over-rated philosophical construct with little real 

 
161 Feyerabend (2010), p. 219. 
162 See Feyerabend (2010), p. 12 and p. 22. 
163 Feyerabend (2010), p. 157 (see also p. 45). 



scientific consequence: “Incommensurability disappears when we use concepts as scientists use 

them, in an open, ambiguous and often counter-intuitive manner. Incommensurability is a problem 

for philosophers, not for scientists.”164 

Whilst Feyerabend’s ideas and arguments were never widely accepted by philosophers or scientists, 

they nonetheless have played a useful and influential role in challenging the potential over-

simplification, dogmatism and complacency that could arise from the substantial development of (a 

positivist and deeply empirical) philosophy of science that took place earlier in the twentieth 

century. 
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3. On the methodology of the social sciences 
Chapter 2 highlighted some of the diverse philosophical topics and perspectives that are relevant to 

the methodology of science. These discussions were set in the context of the natural sciences. In the 

domain of these sciences, the subjects of study are natural, physical phenomena and their 

observation can usually (though not always) be undertaken in carefully controlled and repeatable 

experimental conditions. A principle of the uniformity of nature through time and space permits 

scientific knowledge to be built through some form of inductive inference from the observed to the 

unobserved. Under these conditions, quantitative probabilistic or statistical inference, where 

required, is often feasible due to the presence of data samples that are explicitly well-behaved 

(independent and identically distributed in the jargon of probabilistic objectivists; exchangeable in 

the jargon of probabilistic subjectivists). 

This chapter re-visits philosophical questions of methodology when working in the domain of the 

social sciences. The essential distinction between the social and natural sciences is that the social 

sciences are concerned with the study of some form of human behaviour rather than the behaviour 

of physical phenomena. The social sciences may encompass any field of study that allows theories of 

some aspect of human behaviour to be developed and tested empirically. Subjects that could 

feasibly be defined as a social science include economics, psychology, anthropology, sociology and 

politics. A further distinction can be made between subjects that are about the behaviour of the 

individual human (for example, most of psychology) and subjects that are concerned with the 

collective or aggregate behaviour of humans (for example, economics or sociology).  

The introduction of a human behavioural element to the subject of scientific study brings a raft of 

potential complications to its methodology. These can be roughly grouped under three headings: the 

free will of human beings; the non-stationarity of human societies; the difficulties often associated 

with controlled observation in the social sciences. Let’s briefly outline each of these topics:  

• Free will. Can we theorise, generalise, explain and make predictions about the (individual or 

aggregate) behaviour of conscious, self-determining individuals that possess free will? 

Should we aim to scientifically study how humans actually behave, or how they would 

behave if they had a particular set of motivations or predispositions? If the latter, how can 

the theory be empirically tested? Is there a set of such motivations that can be taken as self-

evident axioms of social science? Could theories of human behaviour become self-fulfilling 

or self-defeating in the sense that the theory itself may alter the human beliefs, expectations 

and actions that the theory is intended to explain or predict. 

• Non-stationarity. The characteristics of human societies change over time in ways that have 

no obvious parallel with, say, the characteristics of natural gases. The applicability of a 

principle of uniformity of nature over time and space may therefore be harder to justify. This 

makes prediction profoundly more difficult. In the natural sciences, the time at which a 

repeatable experiment is conducted is, by the definition of repeatability, generally irrelevant 

(clearly, there are important exceptions where repeatable conditions may not be so easily 

observed, such as in the fields of astronomy or geology). But in the social sciences, the non-

stationary nature of some of society’s conditions may mean that the time of an empirical 

observation of some aspect of human behaviour may be of fundamental importance.  

• Observation. Even if human society could be described as stationary, conducting observation 

by controllable, repeatable experiment may have many inevitable practical difficulties in the 

social sciences. For example, it would take a very long time to reliably observe how different 

monetary policies impact on the long-term rate of inflation.  



These methodological hurdles have arguably resulted in the social sciences emerging and 

progressing more slowly than their natural science cousins. We might date the emergence of 

modern natural science to the Copernican revolution of 1543. A comparable event in the early 

history of the social sciences could be taken to be the publication of Adam Smith’s Wealth of Nations 

over two hundred years later in 1776. Whilst the methodology of natural science has been 

philosophically debated since Francis Bacon’s Novum Organum of 1620, discussion of methodology 

in social science had to wait until the mid-nineteenth century and the arrival of the works of Mill, 

Comte and the German historicists.  

Whether an advocate of Popperian falsificationism or Kuhnian revolutions; whether a frequentist or 

a Bayesian; a realist or an instrumentalist; virtually all philosophers of science would agree that a (or 

perhaps the) defining feature of scientific method is its empiricism; science is about explaining 

natural phenomena by general theories, models or laws, and providing observational evidence to 

support how well these theories usefully represent regularities that can be empirically observed. 

This fundamental feature of science and its method should be true of the social sciences as well as 

the natural sciences; indeed, it is what makes a social science a science rather than, say, one of the 

humanities. Given the complicating factors set out above, can this be done? Can there be a unity of 

scientific method that is applicable across the natural and social sciences, and for which there can be 

a reasonable expectation of success in the social sciences? Many philosophers of science have 

argued that it can be. Or, at least, to the extent that empirical knowledge can be developed in the 

social sciences, it should be acquired through the application of the scientific method that has been 

successfully applied to natural science. As Karl Pearson, writing at the turn of the twentieth century, 

put it: 

“The scientific method is the sole gateway to the whole region of knowledge. The word science is 

here used in no narrow sense, but applies to all reasoning about facts which proceeds, from their 

accurate classification, to the appreciation of their relationship and sequence.”165 

As we will find below, this perspective is not one that is unanimously held amongst philosophers. But 

let us begin under the premise that it is at least possible to acquire scientific knowledge in the fields 

of the social sciences. Questions then naturally follow: how do the special features of the social 

sciences impact on its methodology? Does it require methodological approaches that are completely 

distinct and with no parallel in the natural sciences? And is the nature of its output likely to be 

different or more limited than the output of the natural sciences? For example, will the scientific 

generalisations of the social sciences tend to merely describe some recurring empirical relationships, 

or can they take the form of theories that have deductive and testable implications that can form 

larger logical systems of scientific explanation? Do the social sciences generate scientific knowledge 

of a similar form to the scientific knowledge of the natural sciences? This chapter considers 

questions such as these. 

3.1 History as a form of scientific explanation 
The subject of history is not usually regarded (by historians or philosophers) as meeting the criteria 

required to be classified as a social science. History may therefore appear an odd place to start in 

our discussion of methodology in the social sciences. However, drawing out the distinction between 

methodology in history, and methodology in, say, sociology, which also uses historical events as 

empirical data for its studies, can help to develop a fuller understanding of the demarcation 

between the humanities and the social sciences.  
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The fundamental objective of the academic study of history is to understand, reconstruct and 

explain the unique and specific features of a singular historical event or series of events in as much 

detail as possible. This sharply contrasts with the basic scientific activity of making universal 

generalisations from a set of many controlled, repeatable observations. As we noted in Chapter 2, 

scientists view simplicity as a fundamental desideratum in their descriptions of natural phenomena. 

Historians, on the other hand, value complexity in theirs: ‘historians are as remorseless in their 

pursuit of ever more microscopic explanations as sociologists are zealous in their pursuit of ever 

broader laws’166. 

The prevailing view of professional historians is that the primary purpose of the study of history is to 

understand the past and the path that has been trodden to the present time because it is of some 

intrinsic interest to us – it is not to develop inductive inferences form ‘historical lessons’ that teach 

us that a particular set of circumstances will always (or usually) be followed by another. As Lionel 

Robbins, the great philosophically-minded economist of the early 20th century noted in his critique of 

historical induction, “It is one of the great merits of the modern philosophy of history that it has 

repudiated all claims of this sort, and indeed makes it the fundamentum divisionis between history 

and natural science that history does not proceed by way of generalising abstraction.”167 

Nonetheless, some historians and philosophers of history have argued that it is possible to develop 

causal explanations for what has happened in the past. That is, to identify the historical effects that 

are followed by the presence of specific causes. Can such a causal historical explanation be 

scientific? How can such an explanation be empirically tested? Can the notion of a ‘microscopic 

explanation’ of a unique historical event fit naturally with the definitions of scientific explanation 

that were discussed in Chapter 2.3? There, explanation made use of universal (or statistical) 

generalisations about the behaviours of some form of phenomena – what are sometimes called laws 

of nature. Can similar forms of causal laws be identified that can deliver scientific explanations for 

specific events of history? Interestingly, Carl Hempel, the German-American philosopher of science 

and logical empiricist who was so influential in the development of philosophical thought on 

scientific explanation, argued this was indeed the case. 

The Covering-Law Model of Historical Explanation 

The long-standing philosophical debate on the plausibility of historical explanation was re-animated 

in the middle of the twentieth century when Hempel turned his attention to the methodology of 

history. In his 1942 essay, The Function of General Laws in History168, he argued that causal laws 

could be used to explain the occurrence of historical events using similar logical structures of 

explanation as he advocated for explanation in the natural sciences. Moreover, he argued that these 

laws (which may be deterministic but would more likely be probabilistic in form) would be as 

scientifically legitimate as those produced in the natural sciences. Laws used in historical explanation 

may, according to Hempel, be directly derived from historical tendencies that were identified 

through the categorisation and analysis of disparate historical events (for example, in this way we 

might identify the conditions that tend to make political revolutions more likely). Hempel’s proposal 

that scientific laws could be identified which could provide explanations for historical events became 

known as the covering-law model of historical explanation. 

Hempel’s argument ran contrary to history’s conventional humanist outlook and triggered much 

philosophical debate through the 1950s and 1960s. The explanatory power of historical analysis was 
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strongly rejected by Karl Popper in his 1957 book The Poverty of Historicism169. Popper argued that 

every historical event is unique and infinitely complex, and that societies are continually changing, 

making such comparative historicist analysis futile - the categorisation of like events that Hempel 

envisaged is not possible if no two events can be known to be alike. It makes the discernment of 

historical cause and effect impossible: 

“Long-term prophecies can be derived from scientific conditional predictions only if they apply to 

systems which can be described as well isolated, stationary and recurrent. These systems are very 

rare in nature; and modern society is surely not one of them.”170 

Max Weber, the influential early 20th century social scientist, had similarly argued that reality is “an 

infinite causal web” and that “the reality to which the laws apply always remain equally individual, 

equally undeducible from laws”171. And before him, Venn also argued in the late 19th century that 

the world was infinitely complex and that any historical event and its circumstances must therefore 

be unique. But Venn nonetheless argued that recurring features may be identified in historical 

events “which may offer close comparison with what we may again experience.”172 

This important concession of Venn’s plays an important role in Hempel’s theory of historical 

explanation. Hempel’s covering-law argument did not go so far as to argue that his explanatory laws 

must be deterministic – as the above Popper reference to ‘prophecies’ alludes, this would amount to 

being able to perfectly predict the future as well as perfectly explain the past, which seems rather 

fanciful, even for the most ambitious project of logical positivism. Rather, Hempel argued that these 

laws would tend to be probabilistic. He argued that many historical explanations would take a similar 

form to an example such as: “if Tommy comes down with the measles two weeks after has his 

brother, and if he has not been in the company of other persons having the measles, we accept the 

explanation that he caught the disease from his brother.”173 

From this perspective, Hempel’s arguments seem less ambitious and controversial. It is difficult to 

argue with the idea that we can form rational judgements on the sort of general historical 

circumstances that may make some form of specific outcome subsequently more likely. Medicine, 

law and most other things in life must rely on the use of this form of judgement. Whether we 

consider such singular, probabilistic judgements as forms of scientific knowledge of a similar form to 

the scientific knowledge of the natural science is perhaps a matter of epistemological taste. 

Determining the Empirical Content of Laws of Historical Explanation 

The fundamental test of whether historical explanation can be scientific hinges on the empirical 

testability of the causal laws that are proposed in the explanations. As we saw in Chapter 2.3, 

Hempel’s own definition of an acceptable scientific explanation required the use of a law that had 

empirical content. How can the observation of singular historical events, each with their own unique 

set of circumstances, be used to form testable explanations of cause and effect from which such 

content can be derived?  

Ultimately, inductive evidence, or empirical content, in support of a historical causal law must be 

based on the identification of patterns in historical events. One of the simplest ways of identifying 
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such patterns is by what John Stuart Mill called the Method of Difference. This method was 

introduced as one of his canons of induction in System of Logic: 

“If an instance in which the phenomenon under investigation occurs, and an instance in which it 

does not occur, have every circumstance save one in common, that one occurring only in the former; 

the circumstance in which alone the two instances differ, is the effect, or cause, or a necessary part 

of the cause, of the phenomenon.”174 

Note this is really a piece of deductive logic. So why did Mill refer to it as a canon of induction? 

Because it may not be possible to know if all the circumstances but one are in fact entirely identical. 

After all, history cannot be re-run with the (alleged) causal factor removed. So, in the context of 

explaining historical events in all the complexity of the real world, and without the possibility of 

highly controlled experimental conditions or access to counter-factual observations, such reasoning 

cannot be exact and deductive, and so is reduced to a form of inductive argument. 

Consider, to take one of many possible historical examples, Weber’s 1905 book The Protestant Ethic 

and the Spirit of Capitalism175. Its thesis was that the emergence of Protestantism was the crucial 

factor in the development of capitalism in 18th century northern Europe. The logical argument for 

this claim can be made by arguing that other historical and geographical examples can be identified 

that had the same necessary pre-conditions for the growth of capitalism as 18th century Europe 

other than the presence of Protestantism, and yet did not experience the same capitalist 

development. Expressing this argument in the formal structure of Chapter 2.3, we can identify some 

number, say, r observations which share the same conditions C1, C2,…Cn and all these observations 

are associated with the absence of the effect of the growth of capitalism. We then have another 

observation, which is the period of northern European history when Protestantism emerged, which 

shares the same circumstances C1, C2,…Cn as the r observations, but where Cn+1, the emergence of 

Protestantism, is also present. 

This form of argument can be seen as an example of Mill’s Method of Difference. It leads to the 

conclusion that the emergence of Protestantism was a necessary condition for the development of 

capitalism. But are the premises of this argument reliable? How do we know that these (n+1) 

conditions form an exhaustive list of the circumstances necessary and sufficient for the development 

of capitalism? How can we be sure that the conditions C1, C2,…Cn are all present in exactly (or 

sufficiently?) similar form in all (r+1) observations? Incidentally, historians have disputed the 

observational basis of Weber’s argument by noting that many late Medieval European cities of 

predominantly catholic faith such as Venice and Florence appeared to have engaged in a highly 

successful form of capitalist society.  

For completeness, it should also be noted that Weber did not explicitly use this form of logical 

argument in the book – he focused largely on explanations for why the cause it existed rather than if 

it existed. The determination of the empirical content of the assumed historical causal law was not a 

feature of the book. Instead, he was more concerned with the idea that the Calvinistic dogma of 

predestination played a particular role in transforming the meaning of a man’s labour from a 

mundane necessity into a form of religious calling, spiritually compelling him to work hard for the 

glory of God as ‘the only means of attaining certainty of grace’176.  
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The uniqueness of historical circumstances, and the lack of comparability that follows from it, 

presents a fundamental difficulty in the development of a scientific form of historical explanation. 

The discussion of scientific explanation in Chapter 2.3 emphasised that, for a condition to be 

deemed explanatory of some effect, the effect must be absent when the condition is absent, if all 

other conditions remain unchanged. If we cannot use different historical scenarios to make ceteris 

paribus comparisons of the effect of the presence or absence of a cause, there would seem to be no 

other way of isolating cause and effect. As noted above, in a given historical scenario, we cannot 

directly observe not-C – it is a counterfactual scenario, by definition it does not exist and cannot be 

observed. In these circumstances, a historian or social scientist may explain why C is the cause of E 

by providing an argument for what can be inferred would occur (i.e. not-E) in the event of not-C. But 

such an inference will tend to rely on an assertion about, for example, a person’s intentions or 

disposition or some empirical generalisation about human behaviour177. It is impossible to test 

directly whether the assertion is correct within the unique circumstances in which it is being applied. 

As the historian A.J.P. Taylor once quipped: ‘How can we decide about something that did not 

happen? Heaven knows, we have difficulty enough in deciding what did happen.’178 

Mill’s a priori solution to the lack of empirical content in historical causal laws 

In his late-19th century discussions of historical explanation, J.S. Mill wrote of the ‘certain general 

tendencies’ (as opposed to the rigorous regularities) that could be identified in an empirical analysis 

of historical events. He argued that this lack of precision in observable historical relationships was 

because ‘properties are changeable’ (that is, to a statistician, the historical process is non-stationary) 

and he further argued that this non-stationarity arose primarily because, in society, effects feedback 

into causes in complex ways179.  

Mill did not, however, conclude that this made the empirical analysis of historical relationships 

worthless. He argued that the relationships identified in empirical historical analysis could not be 

regarded as causal laws of nature, but rather as derivative laws that were driven by more 

fundamental (stationary) general laws of human behaviour that were then combined with the (non-

stationary) societal conditions of a given point in time. These fundamental laws were not directly 

observed from empirical observation, but were instead theoretically deduced a priori from first 

principles, i.e. they were taken to be self-evident and axiomatic rather than established by empirical 

observation. The derivative empirical laws implied by these fundamental theories could then be 

tested against the relevant historical data. 

Mill even (implicitly) deployed a form of Bayesian logic to explain this process: he supposed there 

should be a high prior probability attached to the derivate empirical laws that have been deduced 

from the axiomatic fundamental laws of human nature, and that this probability should increase to 

near certainty when confirmed by positive observation of their empirical consequences: 

“Although these results, obtained by comparing different forms and states of society, amount in 

themselves only to empirical laws; some of them, when once suggested, are found to follow with so 

much probability from general laws of human nature, that the consilience of the two processes 

raises the evidence to proof, and the generalisations to the rank of scientific truths…”180 

This argument is notable for proposing that historical explanation can be empirically confirmed, and 

to a very high degree. But what are these self-evident fundamental unchanging laws of human 
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nature laws? And how are they combined with specific societal conditions to derivative empirical 

laws that describe testable human behaviour? It is an interesting model, but it seems to be at best a 

highly abstract description of how to develop an explanatory theory of human behaviour in a 

continually changing world. Given the entire point is to deliver empirically testable causal laws, the 

abstract nature of Mill’s structure of explanation means its usefulness is not so obvious. 

Genetic Explanation 

Interest in a more elaborate form of structure for historical explanation, called a genetic explanation, 

was re-ignited in the 1990s by Clayton Roberts, a leading American academic historian. Hempel had 

discussed the idea of genetic explanation181 and Roberts attempted to further develop it, defining it 

as ‘tracing the causal sequence of events leading up to a historical event, with the purpose of 

explaining the occurrence of that event’.182 

Roberts argued that, through this analytical tracing process, it would be possible to identify the web 

of prior events that caused the event of interest. In this model, causal laws would be required to 

show how each event caused the next in the chain. These laws, however, would not be grand 

universal descriptions of broad categories of historical events of the kind originally envisaged by 

Hempel’s covering-law framework. Rather, by breaking down the causal chain into its smallest 

possible steps, the causal laws linking the events could become self-evident common sense: 

“Each step in the complicated web of events leading to the war or revolution or reformation has to 

be connected with an earlier event by a covering law. And if there is a law, must there not be some 

theory to explain that law? There well may be, but often the covering law is so platitudinous that the 

historian feels no need to find a theory to explain it.”183 

This perspective on historical explanation is doubtlessly more attuned to the actual activity of 

historians than Hempel’s covering law model. As noted above, historians are almost always 

interested in describing a historical event in as much detail as possible, rather than attempting to 

categorise historical events into broad categories that can facilitate sweeping generalisations. Other 

first-rate scholars have also argued in favour of a form of probability-based historical explanation 

that is centred on causal sequence. Sir John Hicks’ 1969 book, A Theory of Economic History, is 

another example. Hicks argued that study of past historical events would allow the development of a 

theory of the ‘normal development’ of an economy through various phases such as customary, 

command, feudal, mercantile, city state, colonial and industrial.  

Roberts argued that his causal laws were so incremental as to be ‘platitudinous’. It might be inferred 

that such self-evident laws were therefore certain, and hence would provide a deterministic and 

complete explanation of events. But, as noted above, perfect historical explanation also implies 

perfect foresight, which is generally accepted to be absurd. Roberts avoided this implication by 

arguing that his self-evident causal laws were merely probabilistic. It is not necessarily easy to 

envisage what these self-explanatory probabilistic causal laws look like. 

The logic of breaking down the causal web of converging events into the simplest, smallest, 

incremental steps would suggest that the number of links in the chain, or strands of the web, could 

be enormous. The product of such a volume of probabilistic inferences seems generally unlikely to 
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result in the generation of strong statements of explanation or prediction. It is distinctly reminiscent 

of Pascal’s ironic tale of how the length of Cleopatra’s nose caused the fall of the Roman Empire. 

Historical Knowledge, Scientific Knowledge and Epistemic Probability 

When Mill, Hempel, Roberts and Hicks refer to probability in the context of historical explanation, 

they clearly do not mean probability according to the objective definitions of Popper, Von Mises or 

Venn that were discussed in Chapter 1. Probability here does not refer to relative frequencies found 

within infinite sets of occurrences. Rather, probability is used here to denote a degree of belief in 

the epistemic sense, as an expression of incomplete knowledge as used by Keynes, Jeffreys and 

logical positivists such as Carnap. We find the logical positivists and Popper on their familiar sides of 

the debate on the validity and usefulness of the fundamental philosophical concept of an epistemic 

probability of a singular event – to Popper and other probabilistic objectivists, it is an ill-conceived, 

ill-defined notion; to a positivist such as Hempel, it fits naturally into their philosophy of knowledge.  

Irrespective of philosophical perspectives, in the context of the analysis of historical evidence, which 

by its nature will be highly qualitative, the difficulty of producing ‘a generally accepted, explicitly 

formulated, and fully comprehensive schema for weighing the evidence for any arbitrarily given 

hypothesis so that the logical worth of alternate conclusions relative to the evidence available for 

each’184 is a formidable hurdle to quantifying such epistemic probabilities. This challenge of 

determining methods for the quantification of epistemic probabilities in the presence of diverse and 

complex information is familiar from the discussions of Chapter 1. Nonetheless, it could be 

reasonably argued that we would be throwing the baby out with the bathwater if we refused to 

concede that some generalisations in the behaviour, motives or tendencies of people can be 

identified and used to infer likely explanations for historical events. As Comte put it: ‘All historical 

positions and changes must have at least some grounds of justification; otherwise, they would be 

totally incomprehensible, because they would be inconsistent with the nature of the agents and of 

the actions performed by them’185.  

Crucially, however, the lack of a basis for the empirical testing of these explanations means that, 

whilst the explanations may be rational, analytical, objective and logical, they are not scientific, at 

least not in the empirical sense (is there any other?). The counter-factual scenario – history’s crucial 

experiment – is not generally empirically available.  Ultimately, historical explanation may make use 

of logic, analysis and intellectual rigour, but its empirical limitations puts it beyond the grasp of the 

scientific method. It therefore should not be considered as a scientific form of explanation. It is 

valuable and valid, but it delivers a distinctly different form of knowledge to that produced by the 

scientific method.  

3.2 Positivism in the social sciences 
There is a major school of thought in the social sciences that attempts to apply the positive empirical 

scientific method of the natural sciences (as discussed in Chapter 2) to the study of human life, 

behaviour and society. In social sciences, positivism aims to identify, empirically measure, predict 

and explain empirical relationships between social phenomena. 

The founding of the positivist school of sociology, and perhaps social science writ large, is usually 

credited to the nineteenth century French philosopher Auguste Comte. Indeed, some date the birth 

of social science as a ‘science’ to the publication of Comte’s vision of positivism in the 1850s (earlier 

historical events such as the Reformation and the freedom of thought that it permitted; together 
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with the invention of the printing press and the wider circulation of knowledge that it in turn 

permitted were clearly important changes in background societal conditions that enabled the study 

of social science to progress more generally). It was Comte who first coined the term ‘positivism’ and 

he was an influence on the Vienna Circle and the logical positivists more widely. The principle of a 

methodological unity across all forms of science was a key tenet of Vienna Circle members such as 

Neurath and Carnap. Comte’s principal work on positivism is his four-volume System of Positive 

Polity, which was published between 1851 and 1854 (the major English translation was published in 

1875-77). His A General View of Positivism provides a single-volume ‘introduction’ to Positive Polity.  

To Comte, positivism was not merely a methodology for sociological research. It was the over-

arching unifying philosophy of all forms of scientific knowledge and it was capable of delivering not 

merely knowledge, but immense practical benefit to society, and even spiritual enlightenment. 

Comte argued that positivism was a stage in intellectual development that only an intellectually 

sophisticated society could reach. First, society must pass through the necessary but unproductive 

stages of theology (theological imagination) and then metaphysics (metaphysical discussion) before 

finally arriving at the permanent intellectual state of positivism (positive demonstration). His 

objective for positivism was ‘to direct the spiritual reorganisation of the civilised world’186. 

Rather like the word ‘probability’, the term ‘positivism’ is used widely in philosophy and across the 

natural and social sciences in various different contexts. In epistemology and the philosophy of the 

natural sciences, positivism is most often used in the context of the logical positivism of the Vienna 

Circle that has been mentioned in various places earlier. There, positivism is primarily concerned 

with developing the application of inductive logic to incomplete information or evidence so as to 

arise at rigorous measures of probable knowledge, the strength of which may be quantifiable. When 

used in this sense, positivism may be viewed as more epistemologically ambitious or optimistic than 

the Popperian philosophy of science, which reflects a narrower epistemology that is closely aligned 

to the objectivist philosophy of probability (and which rejects the notion of attaching measurable 

probabilities to uncertain singular events or statements). 

In some social sciences such as economics, positivism is most often used as the antonym of 

normativism – positive referring to how things are; normative describing how things ought to be 

(and hence including an ethical dimension beyond the factual and empirical basis of science). As will 

be discussed below, the disentangling of normative views on values and ethics from the positivist 

activity of establishing empirical facts can be difficult to accomplish in the social sciences.  

In sociology and other social sciences today, positivism will usually imply the use of empirical data, 

and the application of statistical techniques to it, in order to identify, quantify and test empirical 

relationships within human society in a manner consistent with the generally-recognised principles 

of the scientific method. This quantitative activity may be used to establish empirical generalisations 

or to empirically test theories (as well discuss below, the former tends to be more common than the 

latter in the social sciences). It will often be motivated by a desire to produce knowledge and insight 

that will support the development of successful public policy solutions (though the choice of policy 

solution is ultimately a normative, political act beyond the remit of positive social science). From this 

perspective, some of the earliest work on mortality modelling may be viewed as (a crude precursor 

to) positivist sociology. For example, John Graunt’s 1662 paper was not motivated by the desire to 

accurately price life assurance policies (indeed, such policies barely existed at the time); rather, it 
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was explicitly directed at supporting government policy by improving knowledge and understanding 

of London’s mortality rates187.  

So, positivism can be viewed as the philosophical commitment to apply the scientific method that 

has been so successfully applied in the natural sciences since the scientific revolution to the domain 

of the social sciences. That is, to quantify empirical relationships between related phenomena; to 

develop explanatory theories of these relationships; to test the predictions of these theories through 

further empirical analysis; to continually develop and test new theories that are simpler and / or 

able to explain more. The introductory passage to this chapter noted some of the difficulties that 

potentially arise in this undertaking. The relative lack of success in the social sciences in developing 

empirically tested powerful general explanations of social behaviour that attract the unanimous 

support of the professional community of social scientists suggests these methodological problems 

may be significant. These challenges, and their potential solutions, are discussed further below.  

Experiment and Observation in the Social Sciences 

The ability to observe phenomena behaving under well-defined circumstances is a necessary 

condition for the practice of empirical science. It is, for a range of reasons, generally harder to 

conduct such observations in the social sciences than the natural sciences. It will often not be 

possible to carry out repeatable, controlled experiments in economics or sociology in the way that 

they usually can be in natural sciences such as physics or chemistry. Causal factors and their effects 

usually cannot therefore be individually isolated, controlled and measured in the social sciences, but, 

at best, can only be passively observed. This fundamental difficulty that arises in the practice of 

empirical social science has long been recognised by philosophers. It was written about by Comte 

and John Stuart Mill in the middle of the nineteenth century188 and it has been written about 

extensively ever since. However, many significant philosophers189 have noted that a lack of 

controllability and repeatability in experimental observation is also an inevitable feature of many 

fully recognised fields of the natural sciences. Astronomy and the theory of evolution are canonical 

examples, and there are several others. Harold Jeffreys, who was a leading astronomer as well as 

philosopher of science and probability, argued that this distinction between experiment and 

observation was not fundamental to the empirical method of science, but was merely ‘a difference 

in technique, and not of principle’.190 

The fundamental point is not whether the observation is controlled or passive, but whether 

observations are available in a form that allows for the impact of different factors to be isolated and 

measured so as to permit the identification of empirical generalisations and the empirical testing of 

a theory’s predictions. This is indisputably the case in fields such as astronomy. Is it also true of fields 

such as sociology or anthropology? The answer is, perhaps unsurprisingly, not so clear-cut. The 

opportunity to observe the impact of well-determined changes in single factors on single objects – 

the equivalent of observing the impact of the changing proximity of Uranus on the orbital path of 

Neptune - tends not to arise in the social sciences. Observation in the social sciences will more likely 

involve many observations of an effect in circumstances in which many factors are changing. A key 

reason for the need for many observations arises because the object of study in social sciences is 

often an aggregate or a category of objects that are only homogeneous in particular limited ways, 
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for example, male actuaries in their (very) early forties, rather than a specific individual thing, i.e. 

Craig). 

Providing the size of all the relevant factors can be measured across all the observations, this data 

may still provide a robust basis for relationships between phenomena to be identified, and hence for 

the quantification of an empirical generalisation, or the testing of a scientific theory. However, it 

may not generally be possible to observe and quantify all the relevant factors that may affect human 

behaviour. For example, the behaviour of individuals may be argued to inevitably depend upon their 

individual histories and personal experiences. The totality of potentially relevant historical 

experiences may be beyond observation and measurement.  

Moreover, over the course of a historical period, different factors may vary in relevance. As noted in 

Chapter 3.1, the ‘non-stationarity’ of human society is a fundamental difficulty for the positivistic 

approach to social science. Science is based on the basic idea of identifying repeating phenomena. If 

the causes of the empirical phenomena of social sciences are in a continuous state of flux, there 

seems little hope of developing theories with empirical predictive strength – the essence of positivist 

scientific method.  

The rigorous quantification of the effect of individual factors across (random) samples of multiple 

observations is the natural domain of statistical analysis, and it will come as no surprise to find that 

statistics plays a significant role in positivist social science. Of course, the standard procedures of 

statistical inference must make some assumptions about the properties of the sample observations. 

And whilst controlled laboratory experiments may not be logistically or perhaps even ethically 

feasible in many areas of social science, it may be possible to implement a form of empirical study 

that can generate a sample of observations that has the characteristics required for rigorous 

statistical inference (that is, that the sample data is independent and identically distributed, at least 

from an objectivist perspective). The standard form for this type of empirical study is the 

Randomised Controlled Trial (RCT). In recent decades, the RCT has become a ‘gold standard’ 

methodology for empirical observation in a number of major social sciences such as sociology and 

some fields of economics (indeed, it has been claimed to be at the root of a ‘credibility revolution’ in 

applied microeconomics191).  

Randomised Controlled Trials (RCTs) 

Randomised Controlled Trials (RCTs) have become one of the most significant empirical techniques 

of the social sciences over the last thirty years or so. The statistical theory that underpins the RCT 

methodology is provided in the statistical inferential techniques that were developed in the early 

20th century, most notably the seminal work of Ronald Fisher in the 1920s and 1930s. Fisher was 

probably the most influential statistician of the 20th century. Books of his such as The Design of 

Experiments had an enormous impact on how statistical methods such as hypothesis testing were 

applied by researchers across a wide array of disciplines. Fisher’s own work was not particularly 

concerned with topics of social sciences – his focus tended to be on areas of applied natural science 

such as the agricultural trials of alternative farming methods. But the use of hypothesis testing 

gradually spread widely over the course of the 20th century, first to fields such as medical and drug 

trials, and then quite broadly into areas of social scientific study. 

The basic RCT technique used in social science involves first identifying a pool of a large number of 

experimental subjects that have some common forms of homogeneity (for example, 7 year-old 

Texan school children) and then randomly allocating each of these subjects into two groups: the 
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treatment group, which will be exposed to the potential causal factor under investigation (for 

example, smaller class sizes); and a control group, which will not (and, where relevant and possible, 

the subjects will not be aware of which group they have been allocated to). The randomisation of 

the allocation seeks to ensure that both groups have statistically similar distributions of any other 

characteristics that may be potentially relevant to the impact of the causal effect on the subject 

population (for example, gender, race, IQ, emotional well-being, and unknown casual factors that 

have not been identified). 

The random nature of this allocation process is a fundamental characteristic of RCTs. If all the other 

potentially relevant factors were known and could be measured, the randomization process would 

be superfluous and inefficient: in theory, the experimental subjects could be allocated between the 

two groups in a way that, by design, resulted in the same weights in these various characteristics 

being present in the treatment group and control group. However, this would require a full 

tabulation of all potentially relevant characteristics of the subjects and an assessment of their values 

for each subject. The social scientist simply may not know what factors matter or have the facility to 

measure them. The randomisation process avoids having to answer these questions. But it inevitably 

results in some statistical noise in the characteristics of the two groups (that is, the weights of each 

group will not be equal as some random sampling error will be present). As is the norm in statistical 

testing, the basic strategy for the reduction of the impact of statistical noise is to make the sample 

size large enough to give the tests adequate statistical powerful. 

If the effect under investigation (for example, student performance in a school test) is observed to 

occur in the treatment group in a statistically significantly different way to the control group, we 

then may conclude that there is an empirical (and possibly causal) link between the factor and the 

effect. Note this effect will almost always be probabilistic in nature (that is, the probability of passing 

the test may or may not be observed to change, but it usually won’t be observed to be 0 or 1 in 

either the treatment group or the control group). The effect under consideration will rarely produce 

the same impact on all subjects. And the RCT will not explain why the effect has been observed in 

some subjects and not others within both the treatment group and the control group. 

RCTs are often used to attempt to rigorously measure the impact of some piloted policy intervention 

– for example, to measure the impact of reduced class sizes on measurable academic outcomes for 

school children. In this broader setting, the RCT is closely associated with another three-letter 

acronym of the social sciences and social policy – Evidence-Based Policy (EBP)192. EBP reflects a 

demand from the ultimate intended consumers of social science (policymakers and politicians) for 

objective, reliable and ‘scientific’ insight that is not tainted by an over-reliance on subjective expert 

professional judgement. The EBP field originated in evidence-based medicine which sought to ‘de-

emphasise intuition, unsystematic clinical experience’ and replace it with ‘the conscientious, explicit 

and judicious use of current best evidence’193. 

So, the RCT can be seen as a means of objectively and rigorously gathering empirical evidence in 

fields where the conventional laboratory experimental techniques of the natural sciences are not 

feasible. The gathering of empirical evidence is an essential component of the execution of the 

scientific method. How much can the RCT technique deliver in reliable empirical observation? Is it 

enough to provide the data for empirical generalisations and the testing of scientific theories of the 

social sciences?  
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Before discussing possible answers to these questions, we should first recognise that there are many 

potentially interesting empirical relationships in the social sciences that simply cannot be directly 

assessed through the RCT methodology. This may be because the empirical factors and effects of 

interest are too big in scale to be created and controlled in an RCT environment. For example, the 

impact of central bank interest rate policy on the inflation rate cannot be directly studied using a 

RCT. There may also be ethical considerations that mean that the methodologically preferable RCT is 

not appropriate or even legal – for example, implementing an RCT to assess the impact on human 

health of abusive use of a controlled substance is fraught with ethical and legal difficulties. And it 

would be practically difficult (or at least time-consuming) to use an RCT to assess empirical 

relationships whose duration is measured over long time periods such as decades.  

We should also recognise that the RCT is an inherently statistical process. It is generally framed as a 

form of hypothesis test. That is, it aims to answer the question: is there sufficient evidence to reject 

the null hypothesis that the factor being tested has no effect? As such, the RCT suffers from the 

basic limitations of any hypothesis test: there are a number of design choices (the null hypothesis 

and p value, for example) that involve some subjectivity; and, related to this, there is the inevitable 

statistical possibility of false positives and false negatives. When the RCT is defined as the ‘gold 

standard’ methodology, it may be easy for the non-statistician to lose sight of the fact that its 

conclusions may be wrong in a meaningful proportion of cases and that this property is inherent to 

its design. 

The RCT method does not escape from the challenges and limitations that are general and 

fundamental for the methodology of the social sciences. Chapter 2 discussed how some form of 

assumption about the uniformity of nature was necessary to allow empirical observation to be used 

inferentially in science. Intuitively, this assumption does not necessarily travel well when put in the 

context of the social sciences. Empirical observations of the behaviour of a given society at a given 

point in time are not necessarily a reliable basis for inferences about the behaviour of another 

society at another time. So, at the least, it would seem that the generalisations offered by theories 

of the social sciences and confirmed by RCTs may have to be carefully restricted in their scope of 

application (in the jargon, they have low-order generality). The history of social sciences and RCTs is 

replete with examples of where this limitation has become apparent. To take a well-documented 

case study194, a large-scale RCT was run in Tennessee in the United States in the mid-nineteen-

eighties in which over ten thousand school children were subjects. The purpose of this RCT was to 

gather empirical evidence on whether reduced class sizes had a positive effect on class performance. 

The study delivered the intuitive and now newly evidence-based conclusion that smaller class sizes 

do indeed result in better student performance. Following the publication of the study, a number of 

other US states then implemented education policies that focused on reducing class sizes. But the 

effectiveness of the reduced class size policies varied widely across different states, and it 

sometimes had the opposite effect to the predicted one. This was because the other conditions 

necessary for the causal effect of the reduced class size were not always present. For example, in 

some states the policy necessitated a large influx of new teachers that led to a consequent 

deterioration in the quality and experience of teaching staff.  

Confidence in the general applicability of RCTs’ conclusions may be increased by obtaining similar 

results and conclusions consistently across a number of independent RCT studies. But the inference 

that those results are relevant to a particular new set of circumstances must always rely on a 

judgment that the conditions are sufficiently similar to the previously tested ones. 
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So, is the complexity of a typical set of social circumstances inevitably too complicated to be 

sufficiently controlled and replicated to a degree that can support an understanding of causation, 

explanation and prediction? This has been a long-standing philosophical outlook of some empiricists. 

For example, several decades before Ronald Fisher’s conception of hypothesis testing and the later 

development of RCTs, John Venn expressed his scepticism about the applicability of statistical 

approaches to empirical data in the social sciences: 

“In all social applications of probability, the unchangeable causes can only be regarded as really 

unchangeable under many qualifications. We know little or nothing of them directly; they are often 

in reality numerous, indeterminate, and fluctuating; and it is only under the guarantee of stringent 

restrictions of time and place that we can with any safety attribute to them sufficient fixity to justify 

our theory…as a further consequence, the appeal to statistics has to be made with the caution in 

mind that we shall do mischief rather than good if we go on collecting too many of them.”195 

However, Comte, writing a couple of decades before Venn, expressed a firm belief in the 

‘unchangeable order of the world’ and the ‘invariable laws’ that govern social phenomena. He 

recognised that positivism was predicated on the assumption that ‘all events whatever, the events 

of our own personal and social life included, are always subject to natural relations of sequence and 

similitude’196. He also argued this was the case despite the continual changes in society: ‘The 

extensive modifications of which society admits, go far to keep up the common mistake that social 

phenomena are not subject to any constant law’197. 

Comte’s attempt at squaring the circle of constant laws of social phenomena in the presence of 

continuously changing societal conditions involved distinguishing between irreducible, simple, 

abstract classes of laws; and compound or concrete laws. He argued it was only the former that 

were invariable, and it was only the latter that were affected by changes in society. This is rather 

similar to the distinction that we noted John Stuart Mill made between fundamental laws of human 

nature and derivative empirical laws of societal behaviour in his discussions of historical explanation 

(see Chapter 3.1). However, Mill took these fundamental laws to be a priori or axiomatic, whereas 

Comte argued they could only be discovered ‘by a series of direct inductions from history’198. And, of 

course, the difficulty with using this line of reasoning as a basis for contemporary social science 

methodology is that most contemporary positivist activity in social science is focused on phenomena 

that would naturally change with societal changes rather than on these laws of the fundamental, 

abstract, invariable kind that Comte suggested exist. 

Objectivity and social science 

It is sometimes argued that social scientists’ own social and cultural outlook, ethical values and 

political views can result in a bias or prejudice that impacts on their scientific output. This would 

imply that the output of the social sciences may lack objectivity; that two social scientists, when 

provided with the same (inevitably limited) empirical evidence, may find support for whatever 

scientific theory better fits their social, political or cultural preference. 

There are two essential phases of the scientific method in which a lack of objectivity may influence 

the actions of the social scientist: in the formulation of a scientific theory; and in its testing. As 

discussed in Chapter 2, there are few ‘rules’ around how a scientific theory is formulated. It is 
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essentially a creative process and its legitimacy is not directly determined by the extent to which 

non-scientific factors, including the scientist’s normative values, have influenced this creative act.  

It is the process of gathering and appraising empirical evidence in the testing of a scientific theory 

that demands rigorous objectivity. We saw in Chapter 2.4 that some philosophers of science such as 

Thomas Kuhn have argued that social and personal incentives may create a reluctance on the part of 

the leaders of scientific communities to reject long-established theories in the face of falsifying 

empirical evidence. There are at least two reasons why this effect has the potential to be greater in 

the social sciences than in the natural sciences: the limitations on the gathering of empirical 

evidence in the social sciences may create more latitude for a diverse set of semi-testable, 

competing theories to co-exist indefinitely (the absence of a ‘crucial experiment’); and secondly, the 

social, cultural and political views of the social scientist are often of more relevance to their field of 

study than is the case in the natural sciences. For example, the extent of a scientist’s personal 

preference for libertarianism or communism is unlikely to pre-dispose them towards one particular 

version of quantum theory over another, but it may have an effect on their scientific appraisal of 

Keynes’ theory of international trade. Of course, these two reasons are interrelated: the potential 

impact of their personal views on the social scientist’s scientific appraisal is only possible because 

there is no crucial empirical evidence that would otherwise prevent it. 

Max Weber, whose views on the methodology of the social sciences will be discussed further below 

in Chapter 3.3, argued that the impact of the normative views of social scientists on their scientific 

output was not simply due to prejudice or bias on the part of the scientist. He argued that it was 

often intrinsically difficult for the content of a social science such as economics or sociology to fully 

distinguish its positive empirical statements and logical deductions from its (sometimes implicit) 

normative value judgements (which Weber defined as “practical evaluations regarding the 

desirability or undesirability of social facts from ethical, cultural or other points of view”199). 

Weber argued that this distinction, whilst difficult, was also essential as it formed the boundary 

between social science and philosophy or political policy (or what Weber referred to as social 

philosophy): logical deduction and empirical facts could determine the most efficient means of 

attaining a specific set of ends (science), but those ends were inherently normative and based on 

ethical and cultural (i.e. non-scientific) values. Thus, according to Weber, the subject of economics 

could never determine the ‘right way’ for a society to organise its resources, and it should never try 

to. Rather, it should only seek to determine how to most efficiently achieve a given (normative) 

objective in the presence of some assumed conditions by choosing amongst a set of means which 

are otherwise identical in all aspects of value judgement.  

The Impact of Observation and New Knowledge on Empirical Relationships in the Social Sciences 

The very act of observing in the social sciences may influence the result of the observation. In 

particular, the result of empirical observation and the development of new knowledge that arises 

from it may impact on future human behaviour in a way that renders the observations obsolete and 

invalid for use in subsequent explanation and / or prediction.  

To take a simple example from the world of financial economics, if a finance professor finds a 

market-beating stock-picking algorithm and publishes it in a journal, we could expect market prices 

to then adjust such that the algorithm would not perform so well in the future. Macroeconomics 

provides the most famous example of this kind of ‘feedback’ effect in the shape of Robert Lucas’ 
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Nobel-prize winning model, which gave rise to the ‘Lucas critique’200. The model shows how 

governments’ attempt at controlling the rate of inflation with the objective of managing 

unemployment levels will alter inflation’s causal relationship with the rate of unemployment as 

employers will interpret the inflation signal differently in such circumstances. By acting on the 

knowledge of how inflation and unemployment have related to each other in the past, their future 

relationship may be fundamentally altered.  

More generally, there is an inherently reciprocal or feedback relationship that arises in the social 

sciences between the development of theory and its application. This type of effect has no parallel 

with the natural sciences – the extent to which civil engineers use Newtonian mechanics to design 

and build bridges has no bearing on how accurate Newtonian mechanics is as a description of the 

physical phenomena the engineer is concerned with. But in the social sciences, acting on the insight 

provided by the scientific output can materially change the behaviour of the social system that has 

been analysed. This fundamental idea has been recognised for a long time. For example, John Venn, 

in 1889, wrote: 

“The publication of the Nautical Almanac is not supposed to have the slightest effect upon the path 

of the planets, whereas the publication of any prediction about the conduct of human 

beings…almost certainly would have some effect.”201 

This feedback effect is another source of non-stationarity in social systems that can invalidate the 

uniformity of nature assumption that is implicit in the scientific method. 

Assumptions about human behaviour 

The social sciences are fundamentally concerned with understanding the behaviour of interacting 

people. A scientific theory that seeks to explain some feature of human behaviour must make some 

axiomatic assumptions about the basic motivations or dispositions of people – these will form the 

premises from which explanations and predictions of behaviour can be logically deduced. An 

explanation of empirical facts arising from aggregate human behaviour must be derived from some 

sort of more fundamental model of how individual humans behave. This inevitably must involve 

some degree of abstraction. Fritz Matchup puts the point succinctly: ‘explanation in the social 

sciences regularly requires the interpretation of phenomena in terms of idealized motivations of the 

idealized persons whose idealised actions bring forth the phenomena under investigation’202.  

Whilst the axioms of Euclidean geometry may be regarded as sufficiently self-evident for most real-

life applications of geometry, the axioms of human behaviour that form the backbone of, say, 

microeconomic theory (such as the assumptions that individuals can order by preference all 

consumption choices at all times and will behave rationally and selfishly in light of this knowledge), 

may not correspond so obviously with the real-world. The drivers of actual human behaviour will, at 

least in part, be driven by desires and motivations that are normative, that reflect the particular 

ethical beliefs and values of individual people. Human behaviour is also a function of people’s factual 

beliefs, which may or may not be accurate representations of the facts at a given point in time. 

These drivers of behaviour may be neither self-evident nor empirically discoverable. Beliefs are 

difficult to observe (they are private to the individual), subjective (they are specific to the individual) 

and they may not remain constant for long (society and the world is continuously changing, and 

generally in unpredictable and often in unintended ways). Moreover, it might be argued that the 
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existence of human free will is incompatible with universal generalisations about human behaviour: 

groups of human beings are not homogenous collectives; rather, each human is profoundly unique, 

each some function of their own personal set of historical experiences that is not accessible to 

observation. Some element of their behaviour must therefore be unpredictable and idiosyncratic 

and the explanation of their actions similarly so. Whilst this non-homogeneity argument may 

logically remove the possibility of the existence of deterministic general laws of human behaviour, it 

does not necessarily rule out forms of probabilistic or partial explanation as discussed in Chapter 2.3 

(though this, in turn, does not necessarily imply that the quantification of the relationship through 

the use of positive techniques will be more illuminating or reliable than a ‘common sense’ 

understanding of the phenomena). 

Given social scientific theories’ need for axiomatic assumptions about human behaviour, the above 

difficulties may represent a serious threat to the prospects of success for explanatory theories in the 

social sciences. It raises the spectre of tautology: that the only explanation for the specific action of a 

particular person is to make the empty observation that the action must have been the result of the 

beliefs (factual and / or moral), motives and intentions of that individual at that point in time. 

Different views exist on what methodological strategy that is likely to offer the best hope of success 

in overcoming these difficulties. The most common approach used in the deductive theories of social 

science is some form of methodological individualism. Methodological individualism generally 

assumes humans are a homogeneous collection of individuals, and the approach focuses on 

assumptions for the behaviour of these individuals and less on the impact of institutional factors. 

The standard implementation of methodological individualism in the social sciences, and especially 

in economics, assumes universally rational behaviour in how all humans form positive factual beliefs 

and assumes they always act rationally according to these beliefs. This is how the vast bulk of 

microeconomic theory has been developed and, as noted above, economics is the only subject area 

of social sciences that has generated notable output in the form of formal, deductive, explanatory 

theories.  

Of course, it is clear that the assumption that permanent, perfect rationality is present in all 

individuals can only ever be an approximation to reality203. The question of how well it corresponds 

to reality, and, more importantly, how well economic theory’s explanations and predictions 

correspond to reality, is a discussion which will be more fully discussed in Chapter 4.  

Closing Thoughts on Positivism in the Social Sciences 

Positivist social science is concerned with the identification of empirically recurring relationships in 

forms of social behaviour of humans and the development of explanatory theories that generate 

quantitative predictions and generalisations that are capable of empirical testing. The 

methodological difficulties discussed above, which arise to varying degrees across the social 

sciences, do not make positivist social science logically impossible. But they represent a formidable 

battery of challenges that do not arise in the natural sciences (at least not to anywhere near the 

same degree).  

Some have argued that these issues collectively mean that the positivist approach to social science is 

not likely to be widely successful. In this case, we are left with two possibilities – abandon the 

ambition of deeming much of social study capable of meeting the criteria of scientific study; or apply 
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a radically different form of methodology which has no recognisable relation to the scientific 

method of the natural sciences. There is a school of social science that first emerged in the late 

nineteenth century that advocates just such a radical methodological alternative. It is called 

interpretivism and some of its key features are outlined below in Chapter 3.3. 

3.3 Interpretivism 
Positivism has long had a methodological rival in the social sciences in the form of what is often 

referred to as interpretivism. We say methodological ‘rival’ because philosophers and social 

scientists, like actuaries, enjoy heated debate amongst themselves. But we may more productively 

view these distinct perspectives as complementary approaches that offer different tools for different 

jobs. This, we found earlier, could also be said of the objective and subjective definitions of 

probability; and on the Bayesian and objectivist / falsificationist perspectives on scientific 

knowledge; and, at the risk of spoiling the conclusion, so too will it be our conclusion for positivism 

and interpretivism. But this still leaves much to explore and determine: what is interpretivism and 

how does it differ from positivism? What conditions are necessary for each of the approaches to 

have a reasonable expectation of success? What ‘type’ of knowledge can each approach deliver, and 

what limitations are inevitably placed upon it? These are the types of questions we shall attempt to 

explore in this section. 

The development of interpretivism as a methodology of social science is usually most associated 

with the German historian / economist / philosopher / sociologist / lawyer Max Weber, who wrote 

extensively about it at the start of the twentieth century. But the origins of interpretivism can be 

located in the writings of an earlier generation of Kant-inspired German philosophers, who first 

wrote of the idea of Verstehen (literally, ‘to understand’). The German Historicist school of 

economists, which first emerged in the 1840s and reached its zenith under Schmoller in the 1870s, 

provides the best early example of the adoption of interpretivist methodology in social science. 

So, what is interpretivism? Let’s begin by summarising a couple of the particularly notable strands of 

Weber’s philosophical outlook on social science methodology that help to characterise 

interpretivism as it is understood today. 

Weber’s Antipositivism 

Weber’s philosophical outlook was unambiguously antipositivist. That is, Weber believed the 

positive scientific method generally could not deliver reliable scientific output when applied to the 

social sciences.  

Weber believed that human society was infinitely complex and in a constant state of flux 

(technological, cultural and political). As such, it would be impossible to find scientific laws that 

could explain and predict interactive human behaviour over different periods of time or across 

different societies (in the words of Chapter 1, this constant flux made the assumption of a uniformity 

of nature invalid in the domain of the social sciences). This meant all knowledge in social science 

must be transitory – even if our understanding of some form of today’s social human behaviour is 

correct, that does not necessarily mean it will still be similarly correct tomorrow.  

Naturally, this philosophical outlook made Weber highly sceptical of the value of a methodology for 

social science that was based on the empirical observation of mass social phenomena and the 

application of the scientific method of the natural sciences. To Weber, there were no mass social 

phenomena – rather, every event was unique and should be studied on those terms. His 



epistemological outlook was robustly sceptical: “Fundamental doubt is the father of knowledge”204. 

He also believed that social scientists should have the ‘intellectual integrity’ to be realistic and 

honest about these inevitable limitations that would arise in their fields of study. 

Whilst Weber was doubtless the most influential early-twentieth century thinker to reject the 

application of positivism in social science, he had some diverse sympathisers. A notable example is 

Frank Knight, the eminent American economist, who viewed positivist social scientists as ‘simply bad 

metaphysicians’205. According to Knight, “the fetish of ‘scientific method’ in the study of society is 

one of the two most pernicious forms of romantic folly that are current amongst the educated”206. 

This contrasts sharply with the logical positivists’ belief in a ‘unity of method’ (the idea that a single 

scientific method should be applicable for all forms of empirical investigation). 

Friedrich Hayek was another antipositivist economist from the first rank of twentieth century social 

science scholars. Hayek was an Anglo-Austrian economist and liberal political writer of significant 

influence during the second half of the twentieth century. He was awarded the Nobel Prize in 

economics in 1974. His philosophy had roots in the Austrian school of economics, which could be 

said to be philosophically committed to a deep scepticism of positivism in economics and the social 

sciences more generally. In his Nobel Memorial Lecture, he said of positivism in social science: 

“It is decidedly unscientific in the true sense of the word, since it involves a mechanical and uncritical 

application of habits of thought to fields different from those in which they have been formed.”207 

He argued that the use of positive techniques in social science would result in a ‘pretence of 

knowledge’ that would result in policy mistakes that could cause much long-term harm to society. 

His arguments regarding the severe limitations of positivism in social sciences will, by now, be fairly 

familiar: the world is intrinsically non-stationary and highly complex; the ‘true’ drivers of social 

phenomena are highly numerous, interconnected and are often not observable; and constraining 

our theories to only consider variables that are easily measurable and observable will arbitrarily limit 

the power of the theories; explanations that offer a closer resemblance to the truth will be rejected 

because of a lack of quantitative evidence to support them. 

Weber’s (and Knight and Hayek’s) critique of positivism is quite consistent with the well-discussed 

methodological limitations of positivism discussed in Chapter 3.2 (and the limitations of the 

application of the covering law model of scientific explanation to historical explanation as discussed 

in Chapter 3.1). A positivist’s response to Weber’s criticism might note that most of Weber’s work on 

this subject was produced between 1903 and 1917. Since then, statistical inferential techniques such 

as hypothesis testing and quantitative empirical methods such as Randomised Controlled Trials 

(RCTs) have emerged that have revolutionised what positivist methods can potentially deliver 

(leading some to herald the arrival of a ‘credibility revolution’ in some fields of empirical social 

science). But much of Weber’s critique is more fundamental and is essentially timeless – it is based 

on a view of the intrinsic nature of human society. And whilst empirical methods such as RCTs have 

improved the rigour of observation in social sciences, ultimately they can only deliver empirical 

descriptions of tenuous durability, and not explanatory theory (which, over one hundred years after 

Weber’s writings, tends to remain conspicuously absent in the social sciences, especially outside of 

economics, where its empirical success is contentious, as will be discussed further in Chapter 4). 
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The Interpretivist Alternative 

The second key strand of Weber’s philosophical outlook is the view that antipositivism does not 

imply that it is impossible to generate scientific knowledge in the social sciences. Weber maintained 

it was possible to develop an alternative methodology of social science that was capable of 

“analytically ordering empirical reality in a manner which lays claim to validity as empirical truth”208. 

But instead of being built on the empirical observation of mass phenomena, Weber’s alternative was 

based on the detailed examination of individual, unique and specific ‘concrete’ cases. Indeed, to 

Weber it was the uniqueness of significant events that was the fundamental source of their interest: 

“the specific meaning which a phenomenon has for us is naturally not to be found in those 

relationships which it shares with many other phenomena”209.  

This focus on the detailed study of unique occurrences may at first glance appear more aligned to 

history and historical explanation than the scientific activity of forming empirically testable 

generalities. Like the historian, Weber was more interested in the explanation of unique, individual 

historical events or episodes than in the development of general laws for mass phenomena. But 

above we saw that attempts (of positivist philosophers of science) at historical explanation have 

generally used generalisations to explain why a specific action occurred (for example, Hempel’s 

covering law model of historical explanation). Weber’s belief in the infinite complexity and 

continuously changing nature of reality meant that general causal laws of the type developed in the 

natural sciences would be useless for causal explanation in social science. So, Weber’s approach to 

historical explanation was different and was based on an unequivocal rejection of Comte and 

Hempel’s positivist philosophies. The explanation of these individual events could not be delivered 

by general laws but by identifying “concrete causal relationships” in unique events. And Weber 

believed an analysis of such relationships could provide insight and explanation into the behaviours 

that occur in other unique events. But how?  

Weber believed an understanding of human behaviour could be obtained through the scientist’s 

application of his or her human sense of empathy: ‘the social scientist…is able to project himself by 

sympathetic imagination into the phenomena he is attempting to understand.’210 That is, the social 

scientist is able to place him or herself in the shoes of another, and imagine how it feels and how 

they would be compelled to act in such circumstances. This is the essence of Verstehen. We noted in 

Chapter 3.1 that Weber viewed the untangling of empirical facts from normative views in social 

science as intrinsically difficult. In this interpretative method of empathetic understanding, the social 

scientist would attempt to cast aside his or her own normative views and replace them with those of 

the object of study. Weber maintained that this interpretative methodology was scientific, empirical 

and capable of delivering ‘causal analysis which attempts to establish the really decisive motives of 

human actions’211.  

So, interpretivism seeks a meaningful form of explanation of human behaviour through a qualitative, 

empathetic analysis of the behaviours, values, culture, language, tradition, communities, social 

structures and so on that have been empirically observed in specific, unique and significant cases, 

from the perspective of the human participants. Weber’s objective for the output of an 

interpretative analysis was “the sure imputation of individual concrete events occurring in historical 

reality to concrete, historically given causes through the study of precise empirical data which have 
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been selected from specific points of view”212 in order to “understand on the one hand the 

relationships and the cultural significance of individual events in their contemporary manifestations 

and on the other the causes of their being historically so and not otherwise.”213 

The Ideal Type 

At the risk of making the classic positivistic mistake of unreliably over-generalising about human 

behaviour, it is likely that the typical Anglo-Saxon actuary may find the concept of Verstehen a little 

bit ‘fluffy’. Weber also advocated the use of a methodological tool that was more explicitly logical in 

its analytical workings. This was the concept of the ‘ideal type’.   

The ideal type is an abstraction – it is a mental construction that can be considered as a simplified, 

isolated or magnified version of some empirical object or concept. Importantly, the ‘realism’ of the 

ideal type is not the primary metric of its quality. Rather, its measure of usefulness is found in its 

ability to provide insight into the explanation of the interrelationships between some phenomena of 

interest. Weber was not the first to identify the use of this sort of device in the methodology of the 

social sciences. An earlier example of such an idea can be found in the work of another German 

economic thinker, Johann Heinrich von Thunen, in his famous economic model of agricultural land, 

as described in his 1826 book The Isolated State. The phrase has historically been used by various 

philosophers and methodologists since the nineteenth century to the present day. Here we will 

focus mainly on what ‘ideal type’ meant to Weber. 

Weber’s ideal type was not intended as a direct representation of empirical reality or as some form 

of ‘average’. Rather, the ideal type was a simplified model of reality that could act as a form of 

reference point or benchmark where the behaviour implied by the ideal type could be compared 

with empirical reality to aid its understanding. In this sense, it is deliberately counterfactual: “this 

construct in itself is like a utopia which has been arrived at by the accentuation of certain elements 

of reality. Its relationship to the empirical data consists solely in the fact that where market-

conditioned relationships of the type referred to by the abstract construct are discovered or 

suspected to exist in reality to some extent, we can make the characteristic features of this 

relationship pragmatically clear and understandable by reference to an ideal type.”214 

So far, this notion of an ideal type may sound somewhat similar to the concepts used in a 

hypothetico-deductive positive scientific model. All scientific models involve a simplification of 

reality that generates deductive consequences. Indeed, some methodological writings such as those 

of the nineteenth century Austrian economist Carl Menger argued that the idealisations used in the 

theories of the natural sciences (such as perfect vacuums or frictionless motion) were forms of ideal 

type. 

Whilst the concept of idealisation also plays a key part in scientific explanation in the natural 

sciences, there is a fundamentally important difference: in the hypothetico-deductive scientific 

method, the consequences deduced from the idealised concepts are empirically tested to determine 

whether the model is useful for making generalisations and quantitative predictions about the 

behaviour of other phenomena. But this was not the way Weber envisaged the ideal type being 

used. To Weber, “the ideal type is an attempt to analyse historically unique configurations or their 

individual components by means of genetic concepts”215. His ideal type is not intended to be as 

empirically realistic as possible. Rather, it is intended to illuminate how a specific event or episode is 
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unique and different from the model of the ideal type and what the consequences of these 

differences are: “the construct here is no more than the means for explicitly and validly imputing an 

historical event to its real causes while eliminating those which on the basis of our present 

knowledge seem possible.”216 

So, by this reasoning, Marxist theory, for example, could be useful not because it provides reliable 

empirical predictions (it generally does not), but because it can operate as an ideal type that can 

provide a better understanding of the actual empirical historical development of society: the process 

of comparing and identifying the differences between the real-world and the world implied by 

Marxist theory can provide a better interpretative understanding of how the real world works. This 

key methodological difference between the use of a model as a form of causal law for prediction and 

the use of a model as an ideal type to generate illuminating comparisons is fundamentally what 

differentiates interpretivism from positivism217.  

The essential form of the logical output of the ideal type is a comparison of what happens according 

to the model of the ideal type and what happens (or happened) in a unique example of empirical 

reality. The differences elucidated by this comparison can be explained by the differences between 

the model of the ideal type and the real-world that produced the empirical example. But there is a 

limit to how far this form of explanation can logically take us: by Weber’s own description of reality 

there must be infinitely many differences between the model of the ideal type and the infinitely 

complex real world. How do we know which of these differences are the important ones that really 

‘matter’ in explaining the differences that have been identified between the deductive 

consequences of the ideal type model and the observations of empirical reality? The ideal type 

analysis is not intended to provide a logically complete answer to this question – it is not a deductive 

solution, but an aid to a form of inductive reasoning about the behaviour of complex empirical 

phenomena. 

Closing Thoughts on Interpretivism 

Beyond the limitations of the logic of the ideal type, there are broader difficulties with the 

interpretivist methodology. Clearly, understanding by sympathetic imagination is not a route to 

evidence open to the natural scientist who is concerned with the behaviour of physical phenomena. 

Does the human nature of the phenomena that is studied in the social sciences really provide a 

novel source of evidence that arises from one human’s ability to imagine himself in the shoes of 

another? 

The argument of ‘understanding by sympathetic imagination’ raises concerns about objectivity. This 

understanding is not empirical, at least not in a direct, external and verifiable sense. Some might 

argue that it is the essence of science that its observations are public and repeatable, and its testing 
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is interpersonal (i.e. the same tests and results can be obtained by anyone). But interpretative 

understanding is an internal knowledge that is developed from the individual empathetic reflections 

of the social scientist. It would seem natural that the scientist’s sense of human empathy would be 

influenced by their own life experiences. This suggests an interpretative analysis may have at least 

some element of subjectivity. And it would appear logical to infer that this skill of empathy would be 

stronger when analysing societies that are closer in form and time to the scientist’s own 

experiences, which implies a potential relativity. How can we determine if one person’s 

interpretative account is better or more valid than another’s? 

Where does this brief overview of the ideas of interpretivism leave us? It seems clear that 

intrepretivism is primarily interested in the explanation of unique events, whilst positivism is 

primarily engaged in attempts at rigorous observation and measurement of mass empirical 

phenomena, potentially with a view to explaining and predicting them. The empiricism of 

intepretivism is therefore far removed from the empiricism of the positive scientific method. This 

does not mean it is not meaningful, and it is natural that some knowledge in the social sciences must 

take this form, especially in circumstances where the conditions are not ripe for successful positive 

science. Even Hume, that most sceptical of empiricists, wrote economics essays full of causal 

explanations that were justified by reference to specific historical experiences218. 

Interpretivist methods may provide powerful, rational and analytical insights into why humans 

behave in certain ways in specific circumstances. It may be viewed as an impartial, systematic 

method of the social sciences. It may provide explanations that can be considered intellectually 

robust, highly valuable and entirely valid. It might even be argued that interpretivism is capable of 

generating a form of probable knowledge. But interpretivism is generally incapable of delivering 

explanation in a form that is capable of empirical testing, confirmation or falsification. It therefore 

does not meet some of the essential, basic criteria of science. Indeed, it could be argued that the 

interpretivist approach is based on the premise that science is not possible in the study of the social 

behaviour of humans. This is an entirely reasonable philosophical view (though it wasn’t how Weber 

characterised it). But it would be terminologically simpler if the output of interpretivist analysis was 

called something other than scientific knowledge. So, what might it be called? Interpretivist thinkers 

such as Frank Knight offered a range of terms for this form of knowledge: common sense, informed 

judgment, human insight. Perhaps interpretative knowledge is a natural general term. Whatever we 

call it, it is something qualitatively different to positivist scientific knowledge: that is, knowledge that 

has been acquired through a successful application of the scientific method as outlined in Chapter 2. 

Both are forms of empirical knowledge and understanding that have been acquired from experience 

using methods beyond deductive reasoning. But the differences are meaningful. 
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4. On the methodology of economics 
This chapter builds on Chapter 3’s discussion of methodology in the social sciences in general by 

considering how those topics apply to the specific social science of economic. Economics is the social 

science concerned with how human society produces, distributes and consumes its wealth of scarce 

resources. It is often claimed to be the most advanced of the social sciences. It is generally 

recognised as the social science that has made the greatest progress in specifying deductive 

theoretical systems that aim to explain social phenomena in a manner consistent with the positive 

scientific method of the natural sciences. As a result, many of the topics of Chapter 2 on the 

application of the scientific method to the natural sciences will be of relevance in this chapter as we 

consider the methodological issues that can arise in economics. At the same time, economics is 

unambiguously a discipline of the social sciences, not the natural sciences, and the topics of Chapter 

3 will therefore be very relevant to economic methodology. 

Given the relatively advanced nature of economics as a social science, and its relevance to major 

fields of actuarial theory and practice, this chapter has been specifically dedicated to the 

methodology of economics. Again, we shall focus on the aspects of methodological doctrine and 

dispute that are likely to be of greatest interest to actuarial science. In particular, we have focused 

on topics in which the economic content is germane to the content of actuarial science (for example, 

econometrics and option pricing); and on topics where the form of methodological question has 

implications for broad areas of actuarial methodology (most obviously, in the long-term empirical 

projection of social and economic phenomena). 

A brief potted history of the development of economics as a field of study is provided in an 

appendix. This historical background may be helpful in gaining a perspective on the methodological 

developments and challenges that have accompanied the subject as its techniques and schools of 

thought have evolved (sometimes quite radically) over the subject’s history. 

4.1  Economics as a positive social science 
The deductive structure of its theories, its highly quantitative content, its ambition to predict and 

explain observable empirical phenomena, all suggest economics has more than a passing 

methodological resemblance to natural science. And whilst various schools of economic thought 

have rejected the notion of economics as a positive science capable of performing accurate 

empirical prediction, it seems clear that mainstream orthodox economics is considered by its 

practitioners as a positive scientific discipline with methods capable of producing scientific laws. 

Since the time of Ricardo, the core output of mainstream economics has been the development of 

abstract deductive theoretical systems that seek to deliver general explanation and prediction based 

on ‘a formulation of what holds true under given conditions’219 rather than mere statistical 

generalisation or specific historical analysis.  

Like any deductive system, economic theories will explicitly (and implicitly) specify some premises, 

postulates and assumptions from which implied consequences for the phenomena of interest will be 

deduced. Since the Marginal Revolution and the emergence of neoclassical economics220, the 

articulation of most important economic theories and their deduced implications has tended to be 

undertaken in a formal logico-mathematical setting (the work of Keynes was perhaps the greatest 

departure from this; but decades of Keynesian economists followed him to pick up the task of 

expressing his rhetoric more formally). 
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As the only social science to make serious progress in the development of deductive theoretical 

systems, economics has encountered some unique methodological challenges. Some of the most 

notable and enduring of these are discussed below. 

Deductive Theoretical Systems in Economics – Behavioural Postulates and Factual Assumptions 

As is the case for any deductive scientific theory, in developing an economic theory the economist 

will aim to begin with the minimum and most elementary of premises from which will be derived a 

set of predictive implications that are as wide and as accurate as possible for some phenomena of 

interest. An economic theory will typically specify a set of basic postulates that describe the assumed 

nature of its theoretical world and the economic objects the theory is concerned with (for example, 

individuals, markets, firms, or the macro economy at large). As economics is an intrinsically social 

science, this will necessarily include some explicit or implicit assumptions about the behaviour of 

human individuals.  

Most orthodox economic theory uses a form of methodological individualism in which behavioural 

postulates specify assumed behaviour for individuals en masse – that is, individuals are considered 

as an aggregated pool of many generalised anonymous actors. However, it is also possible for some 

economic theories, especially those in macroeconomics, to either explicitly or implicitly make 

assumptions about the behaviour of institutional or political actors. These could be interpreted as 

postulates about the behaviour of a much narrower and more specific set of individuals (for 

example, a central bank governor), and this latter type of premise may be viewed as being less 

reliable, self-evident or valid as a basis for theory221. 

Standard neoclassical economic theory assumes that individuals know what ends they wish to 

achieve (which may be expressed as the ability to rank their consumption preferences). Economic 

theory takes the ends as a given set of preferences, it does not study what ends individuals ought to 

have. It assumes individuals have control or choice over the means of going about achieving those 

ends and behave in knowledgeable, rational ways that are solely motivated by an objective of using 

those means to realise the ends to the maximum extent. This can be expressed as an objective of 

maximising the ‘utility’ of the consumption of their wealth. 

A number of other basic postulates of individual behaviour beyond perfect knowledge, a preference 

for more rather than less wealth and rationality characterise orthodox economic theory. These 

include an assumption of diminishing marginal utility of wealth (or, equivalently, diminishing 

marginal rates of substitution for all commodities and services); and an assumption that all 

commodities and services are ultimately scarce. Assumptions about the behaviour of firms as well as 

individuals will also be present in orthodox microeconomics. In particular, it may be assumed that 

firms seek to maximise profits (or shareholder value) and that firms experience a law of diminishing 

returns as they increase the quantity of any of the inputs into a production process. 

Since nineteenth century classical political economy, the characterisation of humans as 

knowledgeable, rational and solely motivated by wealth is sometimes referred to as Economic Man 

or homo oeconomicus. Economic Man is motivated by wealth and maximising the utility obtained 

from that wealth. For the avoidance of doubt, Economic Man is not influenced by anything else such 

as ‘the love of a certain country, or a certain locality, inertia, habit, the desire for personal esteem, 

the love of independence or power, a preference for country life, class prejudice, obstinancy and 
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feelings of personal ill-will, public spirt, sympathy, public opinions, the feeling of duty with regard to 

accepted obligations, current notions as to what is just and fair’222.  

The partial and isolated set of motivations that define Economic Man has been responsible for an 

enormous amount of philosophical and methodological debate, particularly about whether 

Economic Man is intended as a realistic, factual description of the economic decision-making of 

people, or whether he should be considered as a heuristic fiction or ideal type in the Weberian 

sense. Those who are sceptical of the notion that economics can function as a positive science have 

not found it difficult to highlight the limitations of Economic Man. This point will be discussed 

further below. But, for our present purpose, it can be immediately noted that the above brief 

discussion highlights two key boundaries that economists have conventionally set when specifying 

the scope of their discipline: how individuals determine and order their preferences (their ends 

rather than the means) is considered a topic for others (perhaps other social sciences); economics is 

only concerned with human actions that are motivated by a specific sub-set of human incentives 

(those that arise from a desire to maximise the utility they experience from consumption of their 

wealth).  

This latter point on the partial nature of economics has been consistently applied by (classical and 

neoclassical) economists since the start of the nineteenth century (if not, before). As was noted 

earlier, the late nineteenth century and its following decades saw a proliferation of different schools 

of economists, some of which, such as the American Institutionalists and German Historicists, had 

philosophical and methodological foundations that were strongly opposed to a positivist 

methodology. They emphasised studying the fullness of realistic behaviour as found in historical 

episodes, emphasising that different times have had profoundly different societies, cultures and 

institutions. These approaches therefore tended to embrace a wider set of social sciences in their 

study, such as sociology and history, and were set against the partial perspective of the classical and 

neoclassical schools. The debates between the ‘classical’ English school and these new schools were 

often tainted by highly emotive and bitter language. Somewhat similarly, but from a quite different 

philosophical perspective to the historicists, Auguste Comte also argued that economics should be 

subsumed into a more general social science that takes account of all aspects of social life. 

But the mainstream of economics has consistently advocated and implemented a partial scope for 

economics for the last two hundred years. Whilst the content of economic theory may have 

developed unrecognisably, the focus on the economic implications of a partial sub-set of the 

possible causes of human action has been a permanent and continuous feature of positive 

economics. In his essay of 1836, On the Definition and Method of Political Economy, J.S. Mill 

unambiguously positioned economics within the broader field of social sciences as a sub-discipline 

that only focuses on behaviour motivated by wealth: 

“It [economics] does not treat of the whole of man’s nature as modified by the social state, nor of 

the whole conduct of man in society. It is concerned with him solely as a being who desires to 

possess wealth, and who is capable of judging of the comparative efficacy of means for obtaining 

that end. It predicts only such of the phenomena of the social state as take place in consequence of 

the pursuit of wealth.”223 

This leads naturally to Mill’s definition of economics: 
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“The science which traces the laws of such of the phenomena of society as arise from the combined 

operations of mankind for the production of wealth, in so far as those phenomena are not modified 

by the pursuit of any other object.”224 

As is demonstrated by the caveat clause at the end of his definition, Mill, and indeed the vast 

majority of economists that have followed since, have recognised that there will inevitably be a 

‘plurality of causes’ at work in the real world beyond those contained in the sub-set of causes that 

economists have decided is within the domain of their subject. As a result, Mill argued, it would only 

be possible for economic theories to predict ‘causal tendencies’ – that is, what would happen if the 

given causal factors changed and nothing else changed, or, as an economist frequently and 

succinctly puts it, assuming ceteris paribus.  

The function of the ceteris paribus assumption in economic theories has been an area of some 

methodological consternation. To understand these concerns, we must recognise that the clause can 

be used in a couple of different ways: it can be used to say that, if all factors in the system remain 

unchanged, then a given relationship between two or more variables will exist; or it can be used as a 

more general all-encompassing condition to state that everything else, both specified and 

unspecified by the theory, remains unchanged.  

When the theory is considered only as a self-standing logical deductive system, the clause can only 

have meaning in the former sense. But even there the meaning can be ambiguous. For example, the 

effect of a decrease in the marginal propensity to consume may result in either an increase in 

investment or a reduction in employment, depending on whether ceteris paribus is defined to mean 

total demand remains unchanged or employment on capital goods remains unchanged. It cannot be 

both, and so this definition is a fundamental and essential part of the theory. In so far as these are 

simply different factual assumptions that differentiate competing economic theories, there is 

nothing logically problematic with that. The difficulty lies is in the ambiguity that can emerge when a 

given theory’s assumptions are only partially defined by use of a vague ceteris paribus that does not 

fully specify the cetera. 

The meaning in the second sense arises when we attempt to find some correspondence between 

the abstract world specified in the theory and empirical reality. By construction, the partial 

abstractions of economic theory leave gaps between theory and reality that must be bridged in 

seemingly arbitrary ways. As a result, this latter use of the ceteris paribus clause has come under 

particular criticism from some philosophers and methodologists, as it makes it very difficult to 

determine under exactly what conditions an economic theory’s predictions are expected to hold 

true (‘ceteris paribus is always a construction rather than an operational concept’225).  

Deductive Theoretical Systems in Economics – Deducing the Implications of the Postulates 

Since the Marginal Revolution of the 1870s, there has been a relentless tendency for economic 

theory to be expressed in increasingly mathematical language. This can be seen as part of a broader 

shift towards the use of more formal and rigorous deductive arguments across the entire academy 

of sciences over the same time period. Even in mathematics itself, Frege in 1879 developed a formal 

language in an attempt to ensure that deductions from axioms to mathematical theorems were ‘free 

of gaps’226. In neoclassical economics, the standard instrument of deduction is a constrained 

mathematical optimisation. In financial economics, another field of economics that has been 
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developed within a mathematical framework, the deductive consequences have often been derived 

directly from the assumption that market prices will not permit arbitrage amongst different financial 

assets.  

The greater clarity of presentation provided by a formal mathematical framework relative to that 

provided by the rhetorical arguments of the classical political economy era has long been advocated 

in methodological discussions. Methodologists immediately recognised the benefits of the 

mathematisation that the Marginal Revolution had brought. In his classic tome of 1891 on economic 

methodology, John Neville Keynes (father of Maynard) wrote: 

“It would be difficult to exaggerate the gain that has resulted from the application of mathematical 

ideas to the central problems of economic theory.”227 

The advantages in the use of formal mathematical language in deductive reasoning are quite 

intuitive. It flushes out any logical ambiguities in the rhetoric and this process may even identify 

logical fallacies. It may bring clarity to the meaning of potentially vague ceteris paribus clauses, 

making assumed mutual dependencies explicit through concise and exact statements. As Irving 

Fisher, who was perhaps the most influential US economist of the early twentieth century, put it: 

“An algebraic statement is usually a good safeguard against loose reasoning; and loose reasoning is 

chiefly responsible for the suspicion under which economic theories have frequently fallen.”228 

But this perspective was not uniformly shared by all economists of that era. The schools of 

economics that sat apart from the neoclassical school, most notably the German Historicists, 

rejected this use of a highly mathematical deductive framework for economic theory. The 

Historicists’ rejection of a mathematical framework for economics, however, can largely be viewed 

as part of a more fundamental rejection of any form of positivist approach to the subject: instead, 

their interpretivist philosophy argued that theoretical insights could only be obtained through the 

study of specific historical events. Nevertheless, scepticism about the extensive use of mathematical 

techniques in economic theory was not confined to Edwardian-era German interpretivist social 

scientists. John Maynard Keynes (son of Neville), in his General Theory, was quite emphatic on this 

point and is worth quoting at length: 

“The object of our analysis is not to provide a machine, or method of blind manipulation, which will 

furnish an infallible answer, but to provide ourselves with an organised and orderly method of 

thinking out particular problems; and, after we have reached a provisional conclusion by isolating 

the complicating factors one by one, we then have to go back on ourselves and allow, as well as we 

can, for the probable interactions of the factors amongst themselves. This is the nature of economic 

thinking. It is a great fault of symbolic pseudo-mathematical methods of formalising a system of 

economic analysis…that they expressly assume strict independence between the factors involved 

and lose all their cogency and authority if this hypothesis is disallowed; whereas, in ordinary 

discourse, where we are not blindly manipulating but know all the time what we are doing and what 

the words mean, we can keep ‘at the back of our heads’ the necessary reserves and qualifications 

and the adjustments which we shall have to make later on, in a way in which we cannot keep 

complicated partial differentials ‘at the back’ of several pages of algebra which assume they will all 

vanish.”229 
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There are a couple of distinct points that Keynes makes here. One is that the decision to use a 

mathematical language to express an economic theory will itself constrain the form of assumption 

that is used: mathematical language is not merely being used to describe the economist’s 

assumptions; rather, the use of mathematical language and the desire for ease of mathematical 

disposition constrains the choice of economic assumptions that can be used. And he is also making 

another point: economics is not the sort of subject that can provide precise or ‘infallible’ answers; 

striving to obtain them is therefore futile. This raises the more fundamental point of whether 

economics should be considered as a positive science or as something else. For now, we may note 

that the first sentence of this quotation of Keynes sounds remarkably consistent with the idea of 

deductive theory as an interpretative ideal type. That is, the theory provides a tool for ‘thinking out 

particular problems’ rather than for generating the accurate empirical predictions that we can 

regard as the currency of successful positivism. We will return to this point in Chapter 4.2. 

The development of economics since the publication of Keynes’ General Theory in the 1930s has run 

contrary to his arguments above. Over the second half of the twentieth century, neoclassical 

economic theory has evolved in an ever more mathematical format. Economics is not unique in this 

regard. Since the end of the Second World War, an array of phenomena such as the advent of 

computing power, improvements in data collection and breakthroughs in statistical inferential 

techniques have resulted in an increasing mathematisation of much of science, finance and other 

fields of life and study (and this is a trend that we appear to still be in the midst of today).  

As a social science seeking forms of deductive theoretical explanation, economics may be one of 

those disciplines that is especially suited to (or susceptible to, depending on your viewpoint) 

mathematisation. The barriers to the empirical testing of economic theories (discussed further 

below) may create an incentive for economists to develop theories that perform well in some other 

sense, and in a sense that is quite different to the objectives of the scientific method discussed in 

Chapter 2. The scientific method imposes a strong discipline on the scientist: the theory is only as 

good as the empirical accuracy of its predictions.  Without this disciplining feature, theory-building 

may be motivated by other incentives. For example, academic economists might find that building 

aesthetically pleasing theoretical economic systems and deducing interesting properties about such 

systems (which may provide little insight into economic reality or generate empirical predictions) 

and presenting these findings to other academic economists is the way to progress in his or her 

profession.  

This lack of ‘empirical discipline’ may incentivise theoretical complexity. In a well-functioning 

scientific method, complexity is only tolerated, not encouraged. And it is tolerated only to the extent 

it can explain more empirical phenomena. In the absence of empirical testability, complexity does 

not necessarily deliver more realism or a deeper explanation or predictive performance for empirical 

economic phenomenon, but instead may be rewarded for its own sake. Moreover, economists may 

not be motivated to tackle the forms of complexity that offer greater realism if such complexity 

happens to be mathematically intractable (‘elegant models of comely shape but without vital 

organs’230). In this scene, the subject may be at risk of devolving from a scientific discipline into a 

mere exercise in abstract logical puzzle-solving. 

Deductive Theoretical Systems in Economics – Empirical testing and the ‘a priori’ perspective 

Chapter 3.2 discussed some of the challenges that arise when attempting to empirically test the 

predictions of positive theories of social science (most notably, the difficulty in obtaining 

observations in well-defined conditions). Economics is a social science, and those complications 
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generally apply as readily to economics as they do to other fields of the social sciences. Take a very 

simple example: it was predicted by the most basic of economic laws that the removal of import 

tariffs delivered by the repeal of the Corn Laws in 1846 would have the effect of permanently 

lowering the price of wheat in Britain. But that is not what subsequently happened. Various 

explanations for this can be found by identifying many ‘disturbing causes’: the price of gold 

significantly depreciated in the following years; there were failures of the potato crop; and so on. An 

economist would naturally argue that the price of wheat was lower than it would have been relative 

to the counter-factual scenario where the Corn Laws were not repealed. But that is clearly not a 

directly testable assertion. 

There are some special aspects of the subject of economics that may make it even more difficult to 

test its predictions than in other social sciences. In particular, the above discussion of the basic 

postulates of economic theory identified a defining trait of economics: it only concerns itself with a 

sub-set of the causal phenomena that may determine human behaviour in the real world. Given the 

practical difficulties in isolating these causes in the empirical observation of economic phenomena, 

and the near impossibility of observation via controlled experiment for most economic phenomena, 

it is often extremely difficult to empirically test the deduced predictions of economic theories. 

Infinitely many potentially ‘disturbing causes’ are always exerting an influence on the empirical data, 

and many of these influences may be very difficult to even identify, let alone accurately measure.  

This has been a recognised difficulty for the methodology of economics since the mid-nineteenth 

century (if not before). Mill argued that it provided an explanation for why the conclusions of 

Ricardo’s theory were at such odds with the empirical realities of nineteenth century Britain – there 

was nothing wrong with the logical deductions of Ricardo’s theory, it was simply that there were 

some disturbing causes and circumstances in the empirical outcomes that the theory did not 

accommodate. Mill’s methodological conclusion was that the hypothetico-deductive scientific 

method could not be implemented in economics (not that it was called that in Mill’s time): it was 

never possible to empirically test the deduced predictions of the theory, as the theory only ever 

attempted to partially capture the spectrum of causal influences that affect reality. Instead, Mill 

argued that the intrinsically partial nature of economics meant that the economist must adopt a 

form of a priori method. 

The essence of an a priori approach is that the degree of belief in the adequacy of a theory is 

founded on the degree of confidence in its premises, postulates and assumptions rather than its 

predictions. If the truth of the postulates are established beyond doubt, and there is no doubt that 

the logical consequences of the postulates are also correctly deduced, then there is no need to test 

the theory by considering whether the empirical evidence (which is inevitably contaminated with 

disturbing causes and circumstances) is or is not consistent with the theory’s predictions.  

Viewed from this perspective, comparison of empirical observation with an economic theory’s 

predictions can only tell us (usually, ex post) about whether the theory is applicable in a particular 

set of realised empirical circumstances. The testing cannot tell us about the validity of the theory. 

This logic also implies that the applicability of a given economic theory is a function of a given 

society’s economic organisation, structure and conditions. As these conditions are continually 

changing within a given society and can vary widely across different societies at any given point in 

time, this clearly implies the degree of applicability of a given theory may vary widely.   

The a priori approach can take many forms. The most extreme version of the a priori method in 

economics has been advocated by the Austrian school (which today, and for most of the last 100 

years, is generally regarded as an unorthodox offshoot outside of mainstream economics). The 



Austrian school was founded in the 1870s by Carl Menger, but it was the work of Ludwig Von Mises 

(who we encountered in Chapter 1’s discussion of the philosophy of probability theory) in the mid-

twentieth century that really clarified its unique methodological perspectives231. Austrian economics 

regards the basic postulates of human behaviour in economics as exact and necessary statements –

not merely self-evident, but known to be true by construction (essentially because all human action 

is considered by the Austrians as purposeful action, which they take to be rational by definition). In 

Kantian language, the postulates are considered to be ‘synthetic a priori’ statements that are beyond 

empirical refutation. On the appraisal of economic theory, Von Mises argued: 

‘[Economics’] particular theorems are not open to any verification or falsification on the grounds of 

experience…the ultimate yardstick of an economic theorem’s correctness or incorrectness is solely 

reason unaided by experience.’232 [italics added] 

Whilst the most extreme form of a priorism in economics was advocated by the Austrian school 

which came much later, Mill’s writings suggest that a weaker but nonetheless definite form of a 

priorism was deeply embedded in the methodological perspectives of classical political economy.  

Many of the early twentieth century’s leading economists, spanning a number of schools of the 

profession, continued to argue that the basic postulates of economic theory should be regarded as 

self-evident (if partial) truths. Some particularly notable examples include: 

• Joseph Schumpeter, in 1914, wrote that the basic assumptions of economics “are so simple 

and are so strikingly confirmed by everyday experience as well as historical experience that 

it would be a shame to waste paper printing any special compilations of facts to confirm 

them”233.  

• Lionel Robbins, one of the leading British economists of his generation, in his  highly 

influential An Essay on the Nature and Significance of Economic Science (first published in 

1932, with a second edition in 1935), argued that the essential postulates of economics are 

“simple and indisputable facts of experience” that “have only to be stated to be recognised 

as obvious”234.  

• Frank Knight, who was a notable sceptic of a positivist approach to economics, argued in 

1924 that some of the fundamental postulates of deductive economic theory could be 

considered as ‘facts’ – for example, the law of diminishing marginal utility must hold true, 

otherwise people would expend all of their wealth in the consumption of the first 

commodity they found235. (Although, as we shall read below, Knight disputed the usefulness 

of Economic Man as a basic postulate.)  

Some of these economists argued that when the self-evidence of the postulates of economic theory 

are considered alongside the severe difficulty in empirically testing the theory’s predictions, the only 

methodological solution was an a priori one: empirical data was so noisy and confounded by 

disturbing causes, it could tell us nothing about the validity of a theory, only whether the 

circumstances permitted its application. 

 
231 Von Mises (1949) 
232 Von Mises (1949) 
233 Machlup (1978), p. 468 
234 Robbins (1935) 
235 Knight in Tugwell (1924), p. 257. 



Robbins’ essay stated “the validity of a particular theory is a matter of its logical derivation from the 

general assumptions which it makes. But its applicability to a given situation depends upon the 

extent to which its concepts actually reflect the forces operating in that situation.”236 

And Schumpeter wrote in 1949: 

“It [empirical statistical evidence] cannot disprove the proposition [of economic theory], because a 

very real relation may be so overlaid by other influences acting on the statistical material under 

study as to become entirely lost in the numerical picture…Material exposed to so many disturbances 

as ours is, does not fulfil the logical requirements of the process of induction.”237 

As may have been noted from some earlier discussions, empiricism was strongly in fashion amongst 

philosophers of science during the second and third quarters of the twentieth century. It came in a 

variety of flavours and from a range of advocates - operationalists, logical positivists, Popperian 

falsificationists and logical empiricists – but they all shared a deeply empiricist outlook. And yet, in 

economics, a defence of an a priori approach can continue to be observed throughout the third 

quarter of the twentieth century from the leading voices of the profession. In his 1957 essay, The 

Construction of Economic Knowledge238, T.C. Koopmans argued that the extreme difficulty in 

empirically testing the predictions of an economic theory meant it was more important to gain 

confidence in the theory’s postulates. Fritz Machlup, a philosopher of the logical empiricist school 

who has perhaps published more on the philosophy of economics than anyone else, made a very 

similar point in 1960: 

“The difficulty with verification [of economic theory] lies less in the excessive purity of the abstract 

constructs and models than in the gross impurities in the operational concepts at our disposal. 

Empirical tests employing inadequate operational concepts are, quite properly, not accorded much 

weight and, hence, the theories so tested survive any number of apparently contradictory 

experience.”239 [italics added] 

Whilst contemporary economists outside of the Austrian school would tend to baulk at the idea that 

they practiced an a priori methodology that was far removed from recognised scientific method, 

those who have specialised in study of the methodology of economics find it harder to reject the 

claim that a form of a priori method remains at the core of much of economic theory. Daniel 

Hausman, one of the leading contemporary methodologists of economics, wrote: 

“It is not unacceptably dogmatic to refuse to find disconfirmation of economic “laws” in typical 

failures of their market predictions. When the anomalies are those cast up by largely uncontrollable 

observation of complicated market phenomena, it may be more rational to pin the blame on some 

of the many disturbing causes, which are always present.”240  

So, we have been able to trace a consistent commitment to some form of a priorism in the 

methodology of economists from the mid-nineteenth century to contemporary times. This 

commitment largely rests on the allegedly self-evident nature of economic theory’s core premises. 

And yet, to people outside of the economics profession, one of the basic problems with economics is 

that its assumptions seem to be highly unrealistic. There are two potential difficulties here. One is 

that, even if the postulates of economic theory could be taken as truths, the acknowledged fact that 
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they only address a partial set of the factors at work in economic phenomena means that they can 

only describe the workings of a counterfactual world. Second, it is a matter of some dispute that the 

postulates of economic theory can be regarded as irrevocably true; and would appear to most 

thoughtful people as self-evidently false, or at best as first approximations. As the leading logical 

empiricist, Ernest Nagel, put it in his classic 1961 book The Structure of Science: 

“The discrepancy between the assumed ideal conditions for which economic laws have been stated 

and the actual circumstances of the economic market are so great, and the problem of supplying the 

supplementary assumptions needed for bridging this gap is so difficult, that the merits of the 

strategy [of economics as an a priori science] in this domain continue to be disputed.”241 

Amongst the most controversial of the ‘ideal conditions’ referred to above by Nagel is the idealised 

notion of Economic Man. The limitations of Economic Man are not difficult to highlight. For example, 

the assumption that humans are capable of correctly ordering all their possible consumption 

preferences requires a perfect knowledge of current conditions and a sufficient understanding of the 

future as to make it accurately predictable. Some may find this unreasonable or conceptually 

infeasible. As Frank Knight put it ‘ignorance, error and prejudice in innumerable forms affect real 

choices’242. To Knight, the immeasurable nature of uncertainty made it inevitable that individuals will 

make forecasting errors that are incompatible with their assumed ability to rank all preferences and 

choices. He also argued that the desired ends of individuals were subject to unpredictable change, 

and were often not individual but inherently ‘social’ in a way that economic theory failed to address 

(‘competitive sport plays a role at least as great as the endeavour to secure gratifications 

mechanically dependent on quantitative consumption’243); and that the process of trying to 

determine our wants is actually a major part of human activity (“We strive to ‘know ourselves’, to 

find out our real wants, more than to get what we want. This fact sets a first and most sweeping 

limitation to the conception of economics as a science.”244). 

The concern with the self-evidence of the premises of an economic theory increase as we move from 

the most basic behavioural postulates to more ambitious assumptions. This issue becomes clear 

when two alternative theories of the same phenomenon use contradictory postulates as the basis 

for describing and explaining the behaviour of the phenomenon. Take the behaviour of the savings 

rate as an example. According to classical economic theory, the amount that people are willing to 

save is an increasing function of the rate of interest. (And the intersection of this function with the 

demand from firms for investment capital determines the rate of interest). This may seem plausible 

and intuitive, after all a higher interest rate implies a greater reward can be obtained from saving. 

But the implications of this behaviour may seem perverse to the actuary, who is trained that a higher 

interest rate means that less needs to be reserved today to fund a given sum for tomorrow. 

By contrast, in Keynesian theory of interest, the amount people save is not a direct function of the 

rate of interest. Rather, Keynes specified the behaviour of saving only indirectly by what is left over 

after consumption has taken its share of income. His postulated law for the behaviour of 

consumption was ‘that men are disposed, as a rule and on the average, to increase their 

consumption as their income increases, but not by as much as the increase in their income’245. This, 

Keynes argued, was a ‘fundamental psychological law, upon which we are entitled to depend with 
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great confidence both a priori from our knowledge of human nature and from the detailed facts of 

experience’246. 

The point here is not to say one theory is better than the other. It is merely to point out that there 

exist basic postulates of economics that appear to be mutually contradictory and yet are each 

regarded as self-evident truths by some economists. It may, however, be said of the natural sciences 

that many mutually incompatible theories happily co-exist. After all, scientific knowledge is a 

‘patchwork of laws’247 rather than a single unified theory of everything. However, economic theory 

has not reached the degree of consensus typical of the mature physical sciences. Mutually 

incompatible economic theories occupy the same piece of the patchwork of laws, competing for 

legitimacy. And, as we have noted above, empirical corroboration of either theory may not be 

forthcoming. 

Where does all this leave us? Doubt about the self-evident truth of economic’s basic postulates 

critically undermines the rationale of the a priori approach: if the postulates can only be considered 

as approximations to reality, then in the absence of empirical testing of the theories’ predictions, 

how do we know that the approximations to reality that the postulates represent are good enough 

(ex ante) to predict given real-world economic phenomena? All scientific laws have their limitations, 

a point at which they are no longer accurate or valid. In the absence of empirical testing of a theory’s 

predictions, how do we know where this limit exists for economic theories (other than ex post)?  

The crux of the problem is that, if we cannot take the postulates of economic theory as self-evidently 

true or self-evidently sufficient to adequately capture the relevant drivers of real economic 

phenomena, economic theories that are intended as positive statements then must be tested like 

other positive scientific theories: by empirically testing their deduced consequences. 

Deductive Theoretical Systems in Economics – Empirical Testing of the Predictions of Economic 

Theories: Part 1 (Hutchison) 

The previous section established that some support for a form of a priori method has been present 

in economic thought throughout the development of economics since the mid-nineteenth century. 

But serious concerns about its use as a core part of economic methodology started to emerge in the 

1930s. The most notable contribution of this period was made by Terence Hutchison in his 1938 

book, The Significance and Basic Postulates of Economics.  

Hutchison was highly critical of the then-prevailing methodology of economic theory, regarding its 

use of vague ceteris paribus clauses and reliance on a priori reasoning as tautological, unfalsifiable 

and, hence, unscientific. His book was the first to explicitly advocate Popperian falsificationism for 

the methodology of economics (Popper’s Logic was first published, in German, in 1934). Hutchison 

urged economists to focus on developing theories that could produce empirically testable, falsifiable 

predictions. He argued this must involve recognising ‘inextricably interconnected social phenomena’ 

by working more closely with other areas of social science such as sociology and political science. 

Popper’s influence in this regard is clear, but Hutchison is less clear about how economics can 

overcome the well-recognised inevitable practical difficulties involved with the empirical testing of 

its predictions. Whilst his exaltation for economics to take heed of important contemporary 

developments in philosophy of science was well-received by much of the economics profession who 

wished to be seen as in tune with sophisticated modern methodological thought, the falsifiability 

criterion implied that much of mainstream economic theory was essentially unscientific.  
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Moreover, and more controversially, Hutchison’s empiricism actually went beyond Popper’s. 

Hutchison urged not only that an economic theory’s predictions are subject to rigorous empirical 

testing. He also argued that a theory should be assessed by the direct empirical testing of its 

postulates and assumptions. This focus on the realism of the assumptions of the theory may sound 

similar to a non-dogmatic form of a priorism. But it differs in a crucial respect: a priorism works from 

the basis that the assumptions are self-evident and therefore do not require empirical testing; to 

require the assumptions to be empirically tested as part of the testing of a theory is a 

methodologically distinct argument. It really ran counter to most contemporaneous philosophy of 

science - even ardent realist philosophers would agree that the scientific theory should be assessed 

by the empirical performance of its predictions, not its assumptions. Furthermore, the basic 

postulates and assumptions of an economic theory may be no easier to test than the theory’s 

predictions. The postulates could only be easily tested if non-observable, theoretical terms had no 

role to play in economic theory. Hutchison’s methodology therefore reduces economic theory to the 

identification of descriptive empirical relationships between directly-observable phenomena. Causal 

laws and explanation had been effectively banished.  

Hutchison’s position was doubtless inspired by Bridgman’s operationalism, which was published a 

decade earlier (see Chapter 1.1 for a brief discussion of operationalism). Operationalism was quite a 

fashionable doctrine of philosophy of science in the 1930s. It lost favour, however, as philosophers 

recognised the important role that non-observable terms played in successful scientific theory. Thus, 

by the 1950s, the logical empiricism of philosophers such as Braithwaite, Nagel and Machlup 

rejected operationalism and embraced the model of a hierarchy of hypotheses where higher-level 

hypotheses containing theoretical non-observable terms played an important role in scientific 

theories (see Chapter 2.1). 

Nonetheless, Hutchison’s book was highly influential amongst economists and its influence endured 

for decades (though it seems that what economists may say about methodology and what they 

practice can be two quite different things). Fritz Machlup, the logical empiricist with a particular 

focus on economics, wrote an article in 1956 that dismissed Hutchison’s requirement for the 

empirical testing of  a theory’s basic postulates and assumptions as a form of ‘ultra-empiricism’, 

writing that ‘the test of the pudding lies in the eating and not in its ingredients’248. That is, the testing 

of scientific theories should be concerned with the empirical performance of its predictions, not its 

assumptions. But, as Machlup himself clearly recognised, unfortunately it was often much harder to 

‘eat’ the theories of economics than those of the natural sciences. 

Whilst Hutchison’s work may not have effected a revolution in the methodology of economic theory, 

it did awaken economists to the prospect that their methods may seem scientifically lacking, 

especially in light of the major developments in philosophy of science that were taking place during 

this period. And changes in the methodology of economics were afoot which were broadly aligned 

to at least some aspects of Hutchison’s empiricism. Quantitative methods developed quickly during 

the 1930s-1950s period. As we saw in Chapter 1, this was a period of major development in 

statistical inference. Much effort was put into improved collection of macroeconomic statistical 

data, and econometrics, that most empirically focused of economic disciplines, started to emerge as 

a major sub-discipline of economics around this time. Econometrics is discussed more specifically 

below in Chapter 4.4. 
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Deductive Theoretical Systems in Economics – Empirical Testing of the Predictions of Economic 

Theories: Part 2 (Friedman) 

Milton Friedman wrote the twentieth century’s most influential essay on the methodology of 

economics. It was published in 1953, in the midst of the era of logical empiricism. Friedman was one 

of the most significant economists of the twentieth century and the winner of the Nobel Prize in 

economics in 1976. Whilst being enormously influential, the vast secondary literature that 

Friedman’s methodology essay spawned included a very significant amount of criticism from both 

philosophers and other economists. 

It is unclear whether Friedman was aware of contemporaneous developments in the philosophy of 

science (his paper did not cite any philosophers), but his essay was broadly aligned to the major 

tenets of the school of logical empiricism. Friedman argued for a unity of method across natural and 

social sciences. He emphasised that the purpose of all science was to make empirical predictions and 

that the only way of testing the worth of a theory was by the empirical testing of its predictions: 

“Its [positive economics’] task is to provide a system of generalisations that can be used to make 

correct predictions about the consequences of any change in circumstances. Its performance is to be 

judged by the precision, scope and conformity with experience of the predictions it yields.”249 

And, more emphatically: “the only relevant test of the validity of a hypothesis is comparison of its 

predictions with experience.”250 

Friedman was more optimistic than most about the prospects of testing the predictions of economic 

theory. He argued that the evidence provided by experience is ‘abundant and frequently as 

conclusive as that from contrived experiment’ though he conceded the empirical evidence in 

economics is ‘more difficult to interpret…frequently complex and always indirect and incomplete’. 

Thus, Friedman accepted that the empirical testing of the predictions of theories is more difficult in 

the social sciences than in natural sciences, but nonetheless held that it remains the only way of 

testing a theory, and that such testing can often be sufficiently achieved in the case of economic 

theories.  

So far, this is quite orthodox and consistent with the contemporaneous logical empiricist’s view of 

how to test hypothetico-deductive theoretical systems. In emphasising that the only purpose of 

science was empirical prediction, he also expressed the view that the truth and realism of a theory’s 

assumptions were irrelevant. This is also not philosophically radical: it is the instrumentalist 

perspective that was discussed in Chapter 2.4. It is not inconsistent with a positive scientific method 

or with the prevailing logical empiricist orthodoxy. To recap, realists argue that theories are at least 

approximately true representations of reality; instrumentalists argue no one knows if scientific 

theories are true, approximately true or completely untrue, but that it does not really matter, as 

what matters is a theory’s ability to reliably and accurately predict the behaviour of some particular 

phenomena. 

Friedman’s unabashedly instrumentalist view, however, provoked considerable controversy amongst 

economists and philosophers. There are perhaps a few likely reasons for this reaction. Friedman, in 

making full use of his considerable rhetorical skills, may have overstated his case. Indeed, he argued 

that realism in assumptions was not merely irrelevant, but that less realism may tend to be 

preferable to more. That is, that the best, most powerful theories are simple ideas that can explain 

much of real-life complexity with little. But, again, simplicity is one of the most accepted desiderata 
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of the scientific method, and it seems possible to view Freidman’s perspective here with more 

sympathy than it was granted. But it did leave Friedman open to the accusation that his 

methodological argument was actually principally motivated by a desire to defend neoclassical 

economic theory (and some of its outlandishly simple postulates).  

Another factor in the level of criticism that Friedman’s instrumentalism attracted is likely to be that 

instrumentalism as a philosophical doctrine generally moved increasingly out of favour relative to 

realism amongst philosophers of science over the course of the twentieth century. Finally, as we 

have seen above, economic methodology up until the publication of Friedman’s paper had tended to 

defend its methods using a highly realist perspective. That is, economic theories and their 

behavioural postulates had typically been defended as self-evidently realistic descriptions of the true 

workings of economic phenomena (the limiting case being a form of a priorism). Friedman’s 

instrumentalism was about as far from the a priorism that characterised the century of economic 

methodology that preceded his paper as it was possible to reach. 

Inevitably, a theory or model with highly unrealistic assumptions can only have predictive success 

within some limited domain. This is itself is not a fatal issue – a limited domain of applicability must 

ultimately exist for any scientific theory. And Friedman acknowledged this and argued that the 

theory’s predictive success should only be judged for ‘the class of phenomena the hypothesis is 

designed to explain’. But how do we know the boundary conditions of validity for the theory? Isn’t it 

trivial or tautological to say a successful theory makes empirically supported predictions within those 

boundary conditions? Isn’t it the point of scientific theories to make novel and unexpected 

predictions well beyond the phenomena being directly considered by the theory? These sort of 

arguments explain why realism has tended to win out over the instrumentalist perspective over the 

last several decades. 

But whether realist or instrumentalist, the most fundamental difficulty with a methodology for 

economics as a positive science is that the empirical testing of economic theories’ predictions is so 

practically difficult. Friedman’s optimistic perspective on the empirical testability of the predictions 

of economic theory is a fundamentally different one to that of economists such as Mill, Schumpeter, 

Robbins and Knight, who, as discussed above, argued that the inherent uncertainty and variability in 

the set of causes at work at any moment in time generally rendered the testing of economic theory 

by empirical economic observation of effects impossible. Contemporary writing on economic 

methodology continues to recognise the limitations for empirical testing of the predictions of 

economic theory, and there is a broad consensus that the prospects for such testing are significantly 

limited. As a leading contemporary economic methodologist has noted, ‘strict adherence to 

falsificationist norms would virtually destroy all existing economic theory’251.  We will return to what 

this may mean for the status of economic theory in Chapter 4.2. 

Experimental economics 

The above discussions have been driven by the major challenges in performing empirical tests of 

economic theories’ predictions. This, in turn, arises from the inability to perform controlled, 

repeatable experiments in the social sciences. In recent decades, a major field of economics has 

emerged called ‘experimental economics’252. It has become a well-established branch of economics, 

and one of the leaders in the field, Vernon Smith, received the Nobel Prize in economics in 2002. Can 

it deliver new capabilities for the empirical testing of economic theories’ predictions? Alas, the 

answer is only in some quite narrow domains – it may be possible to create laboratory conditions for 
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testing efficient auction design or a specific prediction of game theory, but it is not possible to test 

Keynes’ liquidity preference theory in such a way. 

Interestingly, experimental economics seems to have been mainly focused on testing the postulates 

of neoclassical economic theory rather than the theory’s deduced predictions. This is, in essence, 

Hutchison’s ‘ultra-empiricism’. It at least provides some answer to the charge of dogmatism that 

may be levelled at a priorism. That is, economists cannot be accused of unscientific dogmatism if 

they are open to using experimental techniques to test their basic postulates rather than maintain 

that they are self-evident truths. (However, that can only be said if economists are willing to change 

their assumptions when they are demonstrated to be false, which, as we will see below, is not so 

clear.) 

Experimental economics has, however, generated some significant results – perhaps most notably, 

several studies suggest types of human behaviour that are incompatible with the postulate that 

humans are rational utility-maximising individuals253. The responses of the economics community 

when faced with these contradictions to its self-evident postulates has generally been quite 

defensive. They have raised a couple of key arguments: first, economists have only ever argued that 

the postulates are first approximations, and the occasional contradiction is therefore not 

consequential; second, there is no better theory available than that produced by the standard 

behavioural postulates of neoclassical economics. But, as has been argued above, when faced with 

the reality that the postulates are only approximations to truth, positive science requires the 

theory’s empirical predictions to be tested in order to understand whether these approximations are 

indeed consequential or not. It is this aspect of economics as a positive science that has proved so 

difficult to implement with any success, and so far the field of experimental economics has been 

unable to alter this state of affairs. 

Contemporary appeals to realism 

In grappling with the ‘unfalsifiability’ of economic theory, contemporary economic theorists (such as 

Robert Sugden254) and philosophers of economics (such as Uskali Maki255 and Tarja Knuuttila256) have 

appealed to the realism or ‘credibility’ of a theory’s postulates as grounds for making an ‘inductive 

leap’ from the assumed world of the theory to the real world.  

A starting point for this line of defence is that things are not so simple even for the natural sciences. 

We saw in Chapter 2 how the Duhem-Quine thesis showed that there was good reason to doubt that 

any scientific theory could ever be empirically falsified (at least, by a single observation). And Maki 

argues that even the theories of the natural sciences must necessarily be unrealistic257. In the 

theories of physics, the regularities that are identified are specified in idealised conditions that 

require unrealistic or even unrealisable assumptions about the conditions under which the 

regularities hold (Newton’s mechanics ignores the effects of any frictional forces, classic 

electromagnetism assumes a perfect vacuum, etc.). So, both natural and social sciences build 

theories that develop quantitative relationships in idealised conditions that do not fully and 

accurately represent the real world or that isolate a sub-set of particular causal factors of interest.  
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A characteristic difference between the two, however, is that in the natural sciences these idealised 

conditions can often be sufficiently approximated in experimental conditions such that empirical 

testing of the theory’s predictions is permitted. Or, the theory can be sufficiently ‘de-idealised’ using 

already-accepted scientific theory so that it can correspond to the available experimental conditions, 

again allowing the theory’s predictions to be tested (and potentially falsified). In economics, on the 

other hand, the things that are being assumed away are not well-understood extraneous causes that 

are subject to their own well-understood laws such as is often the case in the natural sciences. For 

example, the assumption that economic agents behave rationally is not merely the isolation of a 

cause, it is deliberately assuming away another potential cause (irrational or erroneous behaviour) 

whose effect on the theory is not understood or measurable258.  

As a result, the ‘inductive leap’ is surely bigger in economic theory than it is for the established 

theories of physics. Nonetheless, it is a leap that some argue can be justified. As Sugden puts it: 

“models…describe credible counterfactual worlds. This credibility gives us some warrant for making 

inductive inferences from model to real world”.259 

But this sounds distinctly similar to a priorism: the notion of an ‘inductive leap’ based on ‘credible’ 

assumptions appears to be saying little more than that the theory’s postulates appear quite realistic, 

and this provides a justification for using the theory even though its empirical predictions are 

untestable and the theory is unfalsifiable. A leap of faith is required to take the relationships 

identified in the special simplified world of the theory and apply them to the more general real 

world. 

Some other leading contemporary philosophers of social sciences such as the Cambridge-based Tony 

Lawson have pursued programs of philosophical realism that have concluded that the methodology 

of economic theory has failed to deliver a successful positive science and is incapable of doing so: 

“Modern economics mostly fails to illuminate the world in which we live and, indeed, is in a state of 

disarray….we ought to do something about it, and specifically seek to replace, or at least 

supplement, dominant strategies with others that are rather more capable of being explanatorily 

successful and useful.”260 

Perhaps the only way out of this rather unsatisfactory state of affairs is to note that the 

reasonableness of Sugden’s logic must depend on what the theory’s inductive inferences are used 

for. For example, are the ‘inductive inferences’ intended to be predictions, accurate to 4 significant 

figures, of, say, the effect of an immediate change in the Bank of England’s inflation target from 

2.5% to 3.0% on the level of youth unemployment in North Wales in 2025?261 Or is the inductive 

inference intended to be of a more qualitative form, where the theory provides some otherwise 

non-obvious insight into the nature of the expected effects of a given cause?  

The case for the latter appears much stronger than the case for the former. For example, the Black-

Scholes-Merton262 model tells us that in a world where perfect dynamic replication of an option is 

possible, the risk premium of the underlying asset is irrelevant to the arbitrage-free option price. 
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This result is not (to me, anyway) an obvious consequence of the premises of the theory. We know 

that perfect dynamic replication of an option is not possible in the real world. But the striking and 

non-obvious insight provided by the theory may nonetheless make it reasonable to judge that 

changes in the underlying asset’s risk premia will not have a first-order effect on option prices 

(ceteris paribus). This insight has not been produced by the positive scientific method as described in 

Chapter 2. Indeed, the model manifestly fails as a predictor of empirical behaviour (option prices do 

not have constant implied volatilities that remain constant over time, as is implied by the model). It 

is an interpretative form of knowledge that has been arrived at through ‘conceptual exploration’ of a 

counterfactual ‘ideal-type’ world.  

In a nutshell, and in the language of Chapter 3, should economic theory be considered as a positive 

or interpretative form of theory? The answer may be both. There may be circumstances and types of 

problem where economic theory can function positively in delivering accurate, reliable quantitative 

empirical predictions in the way Friedman claimed. But the above discussion suggests that, more 

often than not, the real value in economic theory is the form of abstract qualitative insight that it is 

capable of delivering. We next further explore this promising idea of economics as an interpretivist, 

as opposed to positive, discipline. 

4.2 Beyond positivism….an interpretivist perspective on economics 
Chapter 4.1 highlighted the profound methodological challenges inherent in the development of 

economics as a successful positive science. We concluded that the issues around the performance of 

economics as a positive science may be resolved by recognising it is not a positive science, but an 

interpretative discipline. That is, the function of economic theory is not to deliver accurate and 

reliable empirical predictions, but to provide conceptual insight that can aid our understanding of 

the workings of empirical reality.  

The most fundamental issue that recurred in our discussion of economics as a positive science was 

the difficulty of obtaining testable empirical predictions from economic theory. This difficulty may be 

considered to arise (at least in part) from the partial nature of economics: it isolates a sub-set of the 

motivations of human behaviour and can therefore only explain and predict the empirical behaviour 

driven by that sub-set of factors. Economic theory also features other forms of idealisation, 

simplification and abstraction which creates a significant gap in correspondence between the 

postulated world of the theory and the reality of a given human society. 

Why have economists chosen to do this? Primarily, because it makes their theory tractable and 

manageable. The real economic world is one of overwhelming complexity and continuous change. 

This raises a natural question: is this a complexity that can be progressively mastered as economic 

theory and techniques improve? Put another way, is it reasonable to expect that economics as a 

positive science is simply at a relatively early stage of development, and it can be expected to 

incrementally progress in the way that positive science is anticipated to in a Popperian model of the 

growth of scientific knowledge? Or are there fundamental epistemic barriers to this development 

that arise from the nature of the phenomena that economics considers that makes such efforts 

futile?  

It would seem reasonable to assume that the answer must be that the relationships between some 

phenomena are constant and uniform across a very wide range of conditions and circumstances, and 

hence are capable of accurate and reliable quantitative description and prediction in the ways 

associated with a successful positive science. But the limited empirical predictive success of much of 

economic theory suggests that the relationships between many economic phenomena and the 

human behaviour that drives them are so complex and contrary to the methodological premises of 



positive science that the methodology of positive science cannot be reasonably expected to master 

them. 

Knightian risk and uncertainty 

Frank Knight’s 1921 book263 famously distinguished between measurable risk and immeasurable 

uncertainty. This distinction offers a fundamental reason for why a positive scientific method may 

fail in areas of economics (and indeed other social sciences). 

Knight distinguished between three types of situations in which probabilities could arise when 

predicting the future behaviour of variable phenomena in the world of business and economics. 

They can be summarised as follows: 

• Type 1: The phenomenon’s probability distribution and its parameters are known from prior 

knowledge or the use of some general (non-empirical) principles. No reference to empirical 

observation is therefore necessary to determine the probability distribution. The 

phenomenon is defined in such a way that all instances of it are homogenous. Put another 

way, its characteristics are known to not change over time or across instances.  

 

• Type 2: The phenomenon’s probability distribution is unknown. A sample of observations 

from the population of instances of the phenomenon is available. The population is known 

to be homogenous and its characteristics are known to not change over time. The sample is 

known to be independent and identically distributed (or exchangeable in subjectivist 

probability terminology). 

 

• Type 3: The phenomenon’s probability distribution is unknown. It is not known if the 

population of instances of the phenomenon is homogeneous and / or we do not know if its 

characteristics are stable through time. Sample observations may or may not be available. 

However, it they are available, it is not known if the sample data are independent and 

identically distributed (exchangeable).  

Knight classified Types 1 and 2 as measurable risk; and Type 3 as immeasurable uncertainty. The 

classification as three distinct types suggests clear boundaries between them, but Knight 

emphasised that, except at the idealised extremes, there was really a continuum of differences in 

degree rather than differences in kind.  

Various aspects of these probabilistic settings were discussed in Chapter 1. Let us take the canonical 

example of an urn of black and red balls to explore Knight’s definitions. The Type 1 case corresponds 

to the setting where the number of balls of each colour in the urn are known. In the Type 2 case, the 

number of balls of each colour in the urn is not known, but a sample of random selections (with 

replacement) from the urn have been made and the results of that sample are known. In such a 

scenario, both objectivist and subjectivist theories of probability will ultimately arrive at similar 

conclusions from the given empirical data in making forms of valid statistical estimates of the ball 

colour proportions with measurable statistical errors. In Type 3, there may be absolutely no 

information about the number and colour of balls in the urn, other than that each ball can only take 

one of two colours, red or black. The discussions of Chapter 1 highlighted that this setting could 

cause much philosophical angst. Subjectivists who subscribe to the Principle of Indifference would 

say the probability of the next ball randomly taken from the urn being red is one half, the same as 
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the probability of it being black. Objectivists argue that it is absurd to claim a logically valid 

numerical probability exists in these circumstances. 

This simple urn example highlights how Knight’s types can differ by degree. For example, does a 

sample of one ball denote a shift from Type 3 to Type 2? And, as we saw in Chapter 1, an objectivist 

would define the probability (in a Type 1 setting) according to what the sample probability tended to 

as the (Type 2) sample size tended to infinity. So, this suggests we can steadily move across a 

spectrum from Type 3 to Type 2 to Type 1 as the (independent, identically distributed or 

exchangeable) sample size increases from 0 to infinity. 

In the Type 3 setting, some other form of indirect information about the composition of the urn may 

be available beyond the results of a sample. For example, perhaps there are two empty tubs of red 

paint and one empty tub of black paint sitting on the floor beside the urn. Knight argued that, in a 

general business and economic context, this is actually the sort of information that most commonly 

arises (that is, business decisions are typically taken in a unique set of circumstances and thus cannot 

be considered as belonging to a homogenous set, but nonetheless are supported by informed 

analysis). Knight described the process by which qualitative information is used in the estimation of 

the probabilities of uncertain (Type 3) events in the following terms: “The ultimate logic, or 

psychology, of these deliberations is obscure, a part of the scientifically unfathomable mystery of life 

and mind.”264 Thus, to Knight, Type 3 probability estimation is a judgement-based estimation and is 

subject to immeasurable error. 

What does this have to do with the methodology of economics? Knight argued that standard 

neoclassical economic theory could accommodate risk (Types 1 and 2), but not uncertainty (Type 

3)265. Unsurprisingly, this is not a view that has been universally accepted by positively-minded 

economists. Milton Friedman, for example, argued that Knightian uncertainty was handled perfectly 

well by subjective probability, and that subjective probability was fully compatible with neoclassical 

economic theory266. But this seems in danger of missing the point: the issue at stake is not the 

internal logical coherence of an economic theory that assumes individuals behave consistently with 

their subjective probability evaluations; rather, the difficulty is with the inductive challenge that may 

arise when applying a theory whose deductions require phenomena (such as the dynamic behaviour 

of asset prices) to follow Type 2 processes (probability distributions of prices are known risks) when 

in reality they follow a Type 3 process (the asset price’s stochastic process cannot be known).  

Knight further argued that some people were better than others at estimating Type 3 probabilities in 

their chosen fields (through the use of intuition, expertise and judgement) and that this skill was the 

essential source of entrepreneurial profit in competitive markets. Thus, his thesis argued that the 

basic postulates of orthodox economic theory were missing an important element, and that this 

element should be explicitly incorporated into the theory. But how can immeasurable uncertainty be 

captured by a methodology of positive science that is based on regularities and uniformities? In a 

nutshell, it cannot. The distinction between risk and uncertainty marks a limiting boundary for 

positive science. 
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Economics and Interpretivism 

Whilst Knight argued that the empirical presence of immeasurable uncertainty rendered much of 

economic theory inadequate as the basis of a positive science, he nonetheless explicitly argued in 

support of the value and usefulness of ‘pure’ deductive economic theory267. But its use would 

require a degree of judgement that was beyond that required of a positive science. In his 

Presidential Address to the American Economic Association in 1950, he explicitly rejected economics 

as a positive science and advocated an interpretivist alternative methodology:  

“The formal principles of economic theory can never carry anyone very far toward the prediction or 

technical control of the corresponding behaviour….the intelligent application of these principles is a 

first step, and chiefly significant negatively rather than positively, for showing what is ‘wrong’ rather 

than what is ‘right’ in an existing situation and in any proposed line of action. Concrete and positive 

answers in the field of economic science or policy depend in the first place on judgements of value 

and procedure, based on a broad, general education in the cultural sense, and on insight into human 

nature and social values, rather than on the findings of any possible positive science. From this point 

of view the need is for an interpretative study.”268 [italics added] 

The term ‘interpretative study’ is itself open to interpretation. What might an interpretivist 

methodology for economics look like? We saw in Chapter 3.3 that Weber, the early champion of 

interpretivism as a methodology for social science, focused on the analysis of unique and significant 

‘concrete’ historical events rather than theoretical deductive systems. Does this mean that the 

interpretivist view of the huge body of work represented by deductive economic theory must be 

that it is meaningless and useless? Knight’s answer to this was an unambiguous and emphatic ‘no’. 

Rather, to Knight, economic theory and economic models may be powerful when used as what 

Weber called an ‘ideal type’. This was certainly (and unsurprisingly) also the view of Max Weber: 

“Pure economic theory…utilizes ideal type concepts exclusively. Economic theory makes certain 

assumptions which scarcely ever correspond completely with reality but which approximates it in 

various degrees and asks: how would men act under these assumed conditions if their actions were 

entirely rational?”269 

Fritz Machlup, writing in 1964, offered a very similar perspective to Knight on the use of economic 

theory within an interpretative methodology: 

“Economic theory is based on counterfactual assumptions, contains only theoretical constructs and 

no operational concepts, and yields results which, we hope, point to elements of truth present in 

complex situations.”270 [italics added] 

In more contemporary times, Daniel Hausman made a distinction between economic theory and 

economic models. Whilst theory was intended to make direct statements about the behaviour of the 

empirical world, economic models were “definitions of kinds of systems, and they make no 

assertions. It is a category mistake to ask whether they are true or to attempt to test them. Their 

point lies in conceptual exploration and in providing the conceptual means for making claims that 

can be tested and can be said to be true or false.”271 
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This perspective on the purpose of economic models is clearly consistent with a Weberian 

interpretive methodology that views such models as ideal types (a point which Hausman directly 

acknowledges272). And, as was noted in Chapter 4.1, the contemporary philosophical output on 

inductive leaps and credible counterfactual worlds appears most naturally resolved by putting it 

firmly in the context of an interpretivist rather than positivist methodology. Indeed, the entire issue 

of a priorism and the difficulty in testing a theory’s empirical predictions largely disappears when the 

deductive theory is viewed as an interpretative model or ideal type rather than as a positive scientific  

hypothesis whose predictions should be directly empirically tested. Recalling the discussion of 

Chapter 3.3, considering a theory or model as an interpretative ‘ideal type’ (as opposed to a positive 

scientific theory) means that its function is not to provide direct prediction or explanation of 

empirical phenomena, and the usefulness of the theory  or model should not be measured by the 

extent to which it does so. This has major implications for what constitutes a successful model. 

The interpretative model provides a purposeful abstraction from the real world, one which highlights 

(deductively) how particular phenomena will behave under specified conditions. The interpretivist 

acknowledges that the ideal type’s postulates may be conceptually far removed from the real world, 

and that the theory’s predictions may differ materially from behaviour in the real world. 

Nonetheless, it can provide powerful insight into the form of interrelationship and interaction of 

certain types of phenomena in the real world. It does not provide quantitative empirical predictions. 

And, ultimately, the extraction of useful real world insight from the interpretative model requires 

analytical skill, expertise and judgement (subjective interpretation) of a different form to that 

employed in the positive scientific method. This use of analytical skill, expertise and judgement is the 

interpretivist solution to the inductive leap from counterfactual theory to empirical reality. The 

solution is less than perfect – what exactly does skill, expertise and judgement constitute? – but the 

leap is arguably less daunting when the target is the generation of insight for experts instead of 

accurate and reliable empirical prediction. 

Treating an economic theory or model as an interpretative study using ideal types rather than as a 

positive scientific hypothesis resolves much of the methodological difficulties discussed in this 

chapter. We noted at the end of Chapter 4.1 how the value of the Black-Scholes-Merton model 

could be much better appreciated when viewed as an interpretative model rather than a positive 

scientific theory. This conclusion may similarly apply to much of the quantitative theory of financial 

economics (especially in the field of asset pricing more generally, for example, yield curve models 

and capital asset pricing models). The theories of financial economics do not directly specify 

behavioural postulates for individuals, and so the interpretative notion of ‘inner understanding’ or 

‘sympathetic empathy’ that was an important element of Weber’s interpretivism is not present. 

Nonetheless, the models of financial economics are highly abstract idealisations, consequently often 

have dubious performance in empirical prediction, and yet can be powerfully insightful and useful as 

interpretative ideal types. 

To take another famous example in the field which should be familiar to actuaries, Vasicek’s original 

paper273 on the arbitrage-free modelling of yield curves is enormously enlightening as a study of how 

a stochastic model specification for the short-term interest rate, together with exogenous risk 

premia assumptions, can determine the arbitrage-free, stochastic dynamics of an entire yield curve 

through time. The model specification is highly abstract and counterfactual. It does not provide a 

remotely realistic description of the empirical behaviour of short-term interest rates or yield curves 
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(a fact Vasicek readily acknowledged in his paper). But the paper provided completely new insight 

into how the stochastic process for the short rate acts as a causal factor on the behaviour of long-

term bond prices in the absence of arbitrage. It demonstrated, for example, how a higher degree of 

mean-reversion in the stochastic process for the short rate could translate into lower volatility in the 

arbitrage-free prices of long-term bonds. It is an abstract economy theory that is highly effective as 

an interpretative study in the sense described by Knight, Machlup and Weber above. 

Moving beyond financial economics, a similar argument can be applied to many areas in the core of 

neoclassical economic theory. General equilibrium theories, which are highly abstract attempts at 

modelling the simultaneous determination of all prices in an economy are a good (and arguably 

notorious) example274. In all of these cases, the power of the theory lies not in its ability to predict 

empirical phenomena such as the pricing of assets, but in its ability to provide deep insights into the 

right and, especially, the wrong (see the Knight quotation above) ways to think about economic 

processes.  

Much of this chapter’s discussion essentially resolves into an analysis of the purpose and use of an 

economic theory or model. The conclusion of this discussion has been that economic reality is 

sufficiently complex that, except in very particular circumstances, economic theory cannot be relied 

on to provide reliable accurate quantitative empirical predictions. That does not mean that 

economic theories or models have no useful role to play. But the role is essentially heuristic. The 

theory or model can provide an expert with new insight into a complex problem, enhancing their 

understanding and aiding their assessments and decisions. But this is only possible when the theory 

or model’s output is interpreted with a deep understanding of its capabilities, assumptions and 

limitations.  

Alas, the hunger for evidence-based and ‘scientific’, objective answers has meant that economic 

models are increasingly directly used as the means of quantitatively determining the ‘right answer’, 

rather than as an interpretative aid for experts. This effect can be observed throughout the social 

sciences. As we shall discuss in Part II of this work, it has also been the root of a notable trend in the 

evolution of some key areas of actuarial practice in recent decades.  

4.3 Econometrics and macroeconomics  
The essence of econometrics is well-captured by the definition provided by the US economist and 

econometrician Arnold Zellner in 1984: econometrics is “the field of study in which economic theory, 

statistical methods, and economic data are combined in the investigation of economic problems”275. 

It might also be added that the economic problems that econometrics tackles tend to be in the field 

of macroeconomics rather than microeconomics. 

There is relatively little academic literature that is focused on the philosophical issues surrounding 

econometrics specifically. But econometrics can be regarded as the ‘the principal empirical method 

of economics’276 and so the philosophical arguments that pertain to positivist economics apply 

equally, and indeed with particular vigour, to econometrics. Chapter 4.1 and 4.2’s discussions of the 

philosophy and methodology of economics are therefore directly relevant to econometrics. We shall 

try to avoid unnecessary repetition.  

Nonetheless, there have been some interesting methodological and philosophically minded debates 

about the practice of econometrics and its prospects of success. These debates have mainly (but not 
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exclusively) taken place amongst leading economists and econometricians rather than between 

philosophers. A brief review of some of these debates will highlight the point that is obvious from 

our review of the methodology of positive economics: the difficulties involved in making empirical 

predictions in a world that is infinitely complex, non-stationary, and (therefore) characterised by 

significant immeasurable uncertainty is the fundamental recurring philosophical theme in 

econometric methodology. 

A History of Underwhelming Performance 

Econometrics started to emerge as a recognised specialist discipline in the 1920s and 1930s in the 

slipstream of the major developments in statistical inference pioneered by Ronald Fisher277. Work on 

the collection of national-level economic statistics began in earnest in countries such as the UK and 

US in the nineteenth century, and this was at least partly driven by a desire to empirically test 

economic theory. The collection of such data underwent serious institutional development in the 

western world in the 1920s – both in terms of the breadth of statistical quantities that were collated 

and the quality of the data gathering. This was at least partly inspired by the empirically focused 

American institutionalist school, which was instrumental in establishing the National Bureau of 

Economic Research in the US in 1920. Its work was crucial in providing the data that fuelled 

econometric models (even though the data were often highly aggregated with non-homogenous 

underlying constituents). Meanwhile, the Great Depression created a demand for new economic 

policy solutions, further stimulating interest in a more empirical approach to economics. 

Early econometricians aspired to marry economic theory and empirical data analysis in a way that 

would elevate economics to the methodological standards expected of a positive science. When the 

Econometric Society was founded in the early 1930s, one of its stated aims was:  

“to promote studies that aim at unification of the theoretical-quantitative and the empirical-

quantitative approach to economic problems and that are penetrated by constructive and rigorous 

thinking similar to that which has come to dominate in the natural sciences.”278 

The empirical testing of the predictions of economic theory was therefore one of the key objectives 

of early econometrics, and it remains so today. However, economic theory rarely, if ever, implies a 

fully specified form of econometric model, especially in macroeconomic theory. The econometrician, 

in attempting to test theoretical predictions, is therefore required to perform a wider role than 

merely applying obvious statistical tests to economic data. As Julian Reiss, the contemporary 

philosopher of economics put it: 

“Econometrics does not only apply statistical methods to pre-existing economic theories. Rather, it 

transforms theoretical claims into testable empirical propositions that can be expressed in a precise 

mathematical form and statistically estimates their parameters.”279 

But this is no straightforward task. Many feasible systems of empirical equations may be consistent 

with a given economic theory and yet result in conflicting conclusions. Consequently, it is difficult 

(and therefore unusual) for econometrics to deliver empirical evidence that can ‘falsify’ a given 

economic theory. Mutually contradictory theories can therefore compete alongside each other, 

seemingly indefinitely, moving in and out of relative fashion as fads and philosophical tastes dictate. 

For example, monetarism (money supply causes price changes) and real business cycle theory (prices 

cause changes in money supply) offer contradictory causal models of fundamental macroeconomic 
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phenomena, and econometric analysis of the theories’ relative empirical performance has been 

ambiguous at best280. 

The empirical testing of economic theory, however, has not been the only objective of econometrics. 

Other objectives include making reliable macroeconomic forecasts and predicting the impact of 

government policy changes on the behaviour of economic phenomena. In the task of economic 

forecasting, econometric models have a long history of poor performance. Since the late 1940s, 

leading economists such as Milton Friedman have queried whether the complexity of econometric 

models really adds any value to their predictive performance281. And analysis of the predictive 

performance of these models has often failed to determine that they perform any better than the 

simplest back-of-the-envelope modelling techniques282.  

Econometric models have also endured similar criticism of their ability to predict the effects of 

changes in economic policies. Academic analysis of the behaviour of competing econometric models 

has found that “they disagree so strongly about the effects of important monetary and fiscal policies 

that they cannot be considered reliable guides to such policy effects…”283 

The critical and consistent point in all of the above criticism is that the methodological challenges of 

econometrics arise from its intrinsically empirical nature. It is the tip of the spear of economics as a 

positive science. To the sceptic of positive economics, the disappointing results we have briefly 

outlined above would come as no surprise.  

Non-Stationarity 

The basic philosophical difficulty with econometrics is that its methods of forecasting and predicting 

are largely inductive. They fundamentally rely on an assumption of a uniformity of nature that is 

difficult to reconcile with the complex, continually changing economic world we live in. Continuous 

and unpredictable changes in the characteristics of the underlying macroeconomic processes hobble 

the applicability of sampling theory and statistical inference, as such changes leave us with a single 

observation of the path of history that cannot be reliably de-composed into many independent, 

identically distributed well-behaved little pieces. 

The history of econometrics is replete with examples of problems created by long-term non-

stationarity. To take an early examples, in 1921, when W.H. Beveridge, the then director of London 

School of Economics and to-be political architect of the British welfare state, analysed four centuries 

of wheat price data, he noted that the behaviour of the time series fundamentally changed in the 

nineteenth century. He attributed this to ‘the disturbing influence’ of industrialisation and the credit 

cycle and concluded the effect ‘cannot be eliminated by any simple model’284.  

Unsurprisingly, this basic concern with the inherent difficulty of predictive modelling of non-

stationary economic systems has echoed through the decades. Examples of expressions of this 

concern from leading economists of the twentieth century are not particularly hard to find. In his 

1970 Presidential Address to the American Economic Association, Wassily Leontif noted: 

“In contrast to most physical sciences, we study a system that is not only exceedingly complex but is 

also in a state of constant flux. I have in mind not the obvious changes in the variables, such as 
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outputs, prices or levels of employment, that our equations are supposed to explain, but the basic 

structural relationships described by the form and the parameters of these equations.”285 

Sir John Hicks, the leading British economist and recipient of the 1972 Nobel Prize in Economics, 

wrote in his 1979 treatment of causation in economics: 

“The more characteristic economic problems are problems of change, of growth and retrocession, 

and of fluctuation. The extent to which these can be reduced into scientific terms is rather limited; 

for at every stage in an economic process new things are happening, things which have not 

happened before – at the very most they are rather like what has happened before.”286 [italics added] 

The problem of non-stationarity is just as pervasive in econometrics today. For example, a 2019 

paper287 on the empirical estimation of the Phillips curve (the relationship between the rate of 

unemployment and the rate of inflation288) noted how statistical estimates of the slope of the curve 

had materially flattened over the last several decades. The authors suggested that a significant part 

of the explanation was likely to be found in changes in how individuals form long-term inflation 

expectations. These in turn had been caused by structural and previously unanticipated changes in 

the monetary policy of the US Federal Reserve in the early 1980s. But research highlighting changes 

in the empirical slope of the Phillips curve has been produced since 1970, if not before289. Some of 

the various explanations offered include changes in the age-sex structure of the labour market, 

changes in unemployment benefit and changes in trade union power290. 

The presence of significant non-stationarity in economic systems suggests that using empirical 

historical data to develop probabilistic predictions of the economic future may be a fool’s errand. It 

might, however, be argued that non-stationarity merely means the model can only be expected to 

work well ‘locally’ in time: that short projection horizons (over which sufficient stationarity in 

conditions can be anticipated) can be more reliably predicted than long horizons; and that recent 

historical data is more relevant than distant historical data. But if it is accepted that a given system is 

exposed to the unquantifiable effects of material unanticipated exogenous shocks, then it is hard to 

see how any projection horizon can be the subject of reliable probabilistic prediction. 

Moreover, if only recent data is deemed relevant for calibration purposes then this will tend to 

result in inadequate data sample sizes for use in the calibration and testing of econometric models 

(bearing in mind these will often be complex non-linear models featuring hundreds of parameters). 

The data may only include observation of a fairly limited set of economic circumstances. It may not 

allow the model to robustly extrapolate beyond those circumstances to the ones that may matter 

for the purposes of risk assessment or policy decision-making.  

The Lucas Critique 

The Lucas critique was noted in Chapter 3.2’s discussion of positivism in the social sciences. Whilst 

its logic has wide applicability across all social science, it was developed in the specific context of 

macroeconomics, and so deserves a further mention in this discussion. In the context of 

econometrics, the Lucas critique can be viewed as highlighting a special kind of non-stationarity: if a 

particular set of government policies prevailed during the historical period to which the econometric 
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model was calibrated, there is no reason to necessarily expect the model to be valid under a 

different set of policies.  

The Lucas critique implies that an econometric model cannot be reliably used to assess the effects of 

new hypothetical policies. This logically undermines the use of econometric models in the evaluation 

of economic policy choices. We saw an illustration of this effect in the Philips curve example given in 

the non-stationarity example. A change in central bank policy on inflation targeting meant that the 

prior relationship between inflation and unemployment was materially altered. 

The degree to which the Lucas critique applies depends on the extent to which the model captures 

the underlying ‘permanent’ features of behaviour, rather than merely describing recently-observed 

empirical relationships that are a function of more fundamental behaviours. Lucas’ recommended 

solution was therefore to advocate using ‘bottom-up’ models of individual decision-making 

processes that can more directly capture the causal relationships that economic policy is attempting 

to impact upon. But these fundamental causal factors are often unobservable phenomena such as 

economic agents’ expectations and the adjustments that these agents will make when faced with 

new government policies291. 

Econometrics and Causation 

The difficult relationship between theory and measurement that arises in econometrics is 

exemplified by the history of how econometricians have wrestled with the concept of causation292. 

Earlier discussions have highlighted that causation, like induction, has a tendency to become 

philosophical quicksand.  

The American post-war economist Herbert Simon defined causation purely with reference to the 

relationships specified by an abstract deductive model, and not in terms of the ‘real-world’ empirical 

relationship of the phenomenon (or the empirical predictive performance of the model)293.  At the 

other end of the philosophical spectrum, the British economist, Clive Granger, proposed a definition 

of causation that was entirely based on the statistical relationships in empirical data, without any 

reference to a law or other form of causal explanation294. Simon’s definition of causation might be 

referred to as ‘theory without measurement’ whilst Granger’s is ‘measurement without theory’. 

Both of these approaches therefore miss at least one of the two crucial aspects of causation as 

discussed in Chapter 2.3 (recall how Hempel and Oppenheim argued that a scientific explanation of 

cause and effect required a logical deduction from a general or universal law that has empirical 

content.)  

Moreover, different econometric analyses of the ‘Granger causality’ present between 

macroeconomic variables such as the money supply and gross national product have arrived at 

diametrically opposite conclusions295. This perhaps reflects the difficulties of working with small 

sample sizes and the inevitable low power of the statistical testing of the models and calibrations 

that use them (a property which econometricians may have tended to underappreciate296). Low 

statistical power amplifies the limitations of measurement without theory: if there must be a 
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tendency to be stuck with whatever null hypothesis we start with, one that is derived from economic 

theory is presumably a better start than one that has been arbitrarily selected. 

Tinbergen and Keynes 

A discussion of the methodological debates in econometrics would not be complete without a brief 

reference to the famous historical dialogue between Jan Tinbergen and John Maynard Keynes.  

Tinbergen, a Norwegian economist, wrote two papers on business cycle modelling for the League of 

Nations in 1939297. He is regarded as one of the great pioneers of econometrics and empirically 

focused macroeconomic modelling. His business cycle modelling, the most ambitious and extensive 

of its time, developed separate macroeconomic stochastic models for the US, UK and Dutch 

economies. The models specified stochastic behaviour for consumers, labour markets, corporations, 

banks and financial markets in 50 stochastic modelling equations containing hundreds of 

parameters, which were calibrated to available historical data. Tinbergen’s model was intended to 

be consistent with macroeconomic theory, but his specification of the workings of so many parts of 

the economy inevitably involved subjective modelling choices. Many of these were made with a 

primary consideration towards mathematical and statistical convenience. 

Keynes, who we saw in Chapter 1 was capable of deep philosophical thinking on probability, was 

highly sceptical of Tinbergen’s application of statistical techniques to empirical economic data298. 

Whilst this criticism and the debate it sparked is now some eighty years old, the topics are 

fundamental and timeless and continue to concern econometric methodology today.  

The main strands of Keynes’ argument were that it was not possible to identify the full model and all 

its relevant factors or their functional dependencies; that many of the factors were unobservable 

and hence immeasurable; and that the model structure could not be expected to remain stable over 

time. As we have seen above, these are all arguments that other leading economists and 

philosophers have made in their criticisms of econometrics over the last one hundred years. 

Tinbergen went on to share the first Nobel prize in economics (with Frisch) in 1969 for his 

contributions to econometric modelling, so clearly not all economists shared Keynes’ scepticism. 

Keynes’ view was not that all empirical analysis in economics was pointless. He conceded that 

quantitative models could be useful tools for describing and providing insight into what had gone 

before. His fundamental philosophical criticism was concerned with the conversion of this historical 

description into an inductive inference about the future. Keynes also argued that labouring under 

the pretence that this form of inductive inference was reliable was not only futile, but destructive: 

“In…natural sciences the object of experiment is to fill in the actual values of the various quantities 

and factors appearing in an equation…and the work when done is once and for all. In economics that 

is not the case, and to convert a model into a quantitative formula is to destroy its usefulness as an 

instrument of thought.”299 [italics added] 

The argument that quantitative predictive modelling is not only futile but destructive is the most 

fundamental form of warning against positivism in the social sciences. Perhaps surprisingly, in the 

second part of this book, we will find this is a view that has been expressed by at least one of the 

20th century’s most important actuaries. 

 
297 Tinbergen (1939) 
298 See Lawson and Pesaran (1985), Chapter 8 for a fuller discussion of Keynes’ views on econometric 
modelling and his critique of Tinbergen’s work. 
299 Keynes (1973), p. 299. 



 

 

 

 

 

 

 

 

Part Two: On the Methodology of Actuarial Science 
  



 

5 Contemporary methodology of actuarial science 
 

Part One considered some of the major topics of philosophy of science that may be potentially 

relevant to the methodology of actuarial science. These topics included the philosophy of probability 

and statistics; inductive inference from the observed to the unobserved; the scientific method and 

how it differs in the natural and social sciences; positivist and interpretivist perspectives on method 

in social science; the philosophy of economic theory and econometrics; and the measurability of the 

risk and uncertainty associated with the phenomena of the social sciences. 

Part Two considers what lessons the philosophical analyses of these subjects may offer for actuaries. 

The actuarial profession is a learned profession. It is concerned with the professional application of 

technical knowledge to fulfil the functions that lie within the profession’s domain of expertise. This 

technical knowledge we will, for our purposes and to align with convention, call actuarial science. It 

will often be an application of other, independently developed, ‘pre-existing’ science, most often 

originating in the domains of mathematics, statistics, finance and economics. It will, however, also 

make use of technical knowledge developed in increasingly diverse fields such as computer science, 

demography and medicine. It is not the original source of this scientific knowledge, but its 

application to questions recognised as within the actuarial domain of expertise, that we will use to 

determine what constitutes actuarial science. 

This chapter will aim to first identify some key characteristics of the technical knowledge that is 

representative of actuarial science. This is challenging because actuarial science uses such a wide 

range of techniques and methods from a variety of fields. Nonetheless, there is some commonality 

to the types of questions that actuaries seek to answer, and this helps to determine some 

fundamental characteristics for the way the profession makes use of the diverse library of scientific 

knowledge at its potential disposal. Having identified these general characteristics of actuarial 

science, we will then reflect on what major methodological considerations they naturally give rise to, 

based on what has been surveyed in Part One. This analysis will inform our view of which 

methodological approaches are likely to make for successful actuarial science and which are not. 

Chapter 6 will then consider the implications of Chapter 5’s analysis for how the methodology of 

actuarial science may further develop. First, Chapter 5.1 briefly highlights some of the significant 

historical discussions of the methodology of actuarial science that have already gone before us. 

5.1  A brief history of thought on the methodology of actuarial science 
Historically, research on the philosophical underpinnings of actuarial science has been relatively thin 

on the ground. Some of the historical highlights of actuarial output on methodology are outlined 

below. 

A historical summary of the methodology of actuarial science may begin in the 1760s with Richard 

Price. Price played a uniquely interesting role in the development of both inductive inference and 

actuarial science. It was Price who was bequeathed Thomas Bayes’ unpublished musings on 

probability and statistics upon Bayes’ death in 1761, and who saw that they were published by the 

Royal Society (of which both Bayes and Price were both Fellows) in 1763. If it wasn’t for Price, the 

historical development of Bayesian probability and statistics may have been quite different. It would 

certainly have been called something different (Laplacian, probably). From 1768 to the 1780s, Price 

was a consultant to Equitable Life, and helped to establish the financial architecture of the British 

mutual life office and the engine of its growth, the with-profits policy. It was a structure that was 



replicated by many other life offices in the decades that followed, and which was successfully 

sustained for over 200 years.  

Price’s major actuarial publication was the 1772 book, Observations on Reversionary Payments. Price 

was a technically sophisticated intellectual, but his actuarial ideas and methods were uniformly 

diffused with practical awareness and commercial vision. He was concerned with how life assurance 

policies should be fairly priced, how mortality rates could be estimated from population data, how 

life offices could be run in a financially secure and sustainable way that was equitable across 

generations and across different classes of policyholder. His actuarial output was pragmatic, 

empirical and applied. He did not suggest his actuarial work was in search of universal truths or new 

types of fundamental scientific knowledge. His mortality tables were rigorous analyses of historical 

data, but he was the first to include the caveat that ‘at particular periods, and in particular instances, 

great deviations will often happen’300.  

Not all historical actuaries retained Price’s intellectual humility. Gompertz published an article in 

1825 proposing a parametric formula for how mortality rates vary by age301. He deduced this 

formula from a premise about how a human’s ability to fend off death would deteriorate with age: 

‘the average exhaustion of a man’s power to avoid death were such that at the end of equal 

infinitely small intervals of time, he lost equal portions of his remaining power to oppose destruction 

which he had at the commencement of those intervals.’302 He found that when his formula’s 

parameters were fitted to some standard mortality tables, the formula could provide a reasonable 

fit to the mortality table’s numbers over a large portion of table’s age range. When Gompertz 

discussed his paper decades later at the International Statistical Congress of 1860, he argued his 

formula represented a ‘law of human nature’ that he had deduced from fundamental principles303. 

Gompertz saw himself as a pioneering scientist, finding permanent laws of uniformity on a par with 

physical laws of nature. He elaborately compared his law of human mortality to the physical 

mechanical system of a piston in a tube producing air condensation.  

Senior actuaries of Gompertz’s era such as such as Jellicoe, Makeham and Woolhouse all advocated 

this philosophically ambitious interpretation of Gompertz’s formula. By the end of the nineteenth 

century, however, such an interpretation was strongly disputed by some within the actuarial 

profession, perhaps because the observations of mortality experience that had since been 

accumulated could highlight the less than permanent nature of Gompertz’s law and its parameters.  

Thomas Young, in his Institute Presidential Address of 1896, provided a particularly robust critique of 

Gompertz’s ambitious claims304. Young argued that medical developments and societal changes 

meant that no stable law of human mortality rates could be present over time. He also argued that, 

to be regarded as a law of nature, the quantification of the relationships in the formula should not 

only be stable over time, but should be deduced directly from the theory (and then subject to 

empirical tests), rather than merely be calibrated to some empirical data. Young’s points would 

seem very reasonable in the eyes of much of the modern philosophy of science discussed in Part 

One (especially Chapter 2). Nonetheless, it is doubtless the case that in many fields of empirical 

social science, such as econometrics, empirical study is focused on the parameterisation of a theory 

rather than on the testing of a theory that has theoretically deduced parameter values. 
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Little of note seems to have been written by actuaries explicitly on methodology or philosophical 

considerations during the first half of the twentieth century. This is perhaps surprising given this was 

a period of much activity and significant progress in the philosophy of science and probability (albeit 

this was largely focused at the time on the physical rather than social sciences). However, by the 

1950s, some articles were starting to appear in actuarial journals that reflected on some of these 

developments, particularly in the philosophy of probability and the topic of the relative merits of the 

objectivist and subjectivist approaches to probability (the subject matter of Chapter 1 above).  

The famous mathematician and Bletchley Park veteran, I.J. Good, published an article in the Journal 

of the Institute of Actuaries in 1956 in which he advocated the actuarial adoption of Bayesian 

methods305. A couple of notable papers on the actuarial application of Bayesian techniques were 

published in the American actuarial profession’s journals in the mid-1960s306. In 1975, a polemical 

article in favour of the objective perspective on probability and statistics was published in the 

Journal by the Australian actuary J.M. Ryder307. We noted in Chapter 1 how a 1981 paper by Ryder 

published in the British Journal for the Philosophy of Science made him the somewhat accidental 

architect of the intersubjective approach to subjective probability (he was vehemently anti-

subjectivist in philosophical outlook, and his paper on intersubjective probability was actually 

intended as a refutation of subjective probability, rather than as its potential salvation). Ryder’s 

1975 paper reflected his strong objectivist persuasion. With the possible exception of the American 

papers on Bayesian applications, it is not obvious that any of these papers excited great interested 

amongst the actuarial profession. The Journal papers of Good and Ryder were somewhat abstract 

and theoretical, and their potential implications for actuarial methods would likely have been 

unclear to the typical practicing actuary. 

The 1980s and 1990s saw some quite notable material published on actuarial methodology. In 

particular, Frank Redington, in the closing stages of his career in the 1980s, made some strong 

statements about actuarial methods and techniques that suggested a deep philosophical scepticism 

towards positivist methods in the social sciences in general, and in actuarial science in particular308. 

And in the late 1990s, the actuary John Pemberton presented a substantial and controversial paper 

on the methodology of actuarial science that was published in the British Actuarial Journal309. The 

Staple Inn discussion of this paper was opened by Nancy Cartwright, the highly renowned 

philosopher of science. A couple of years earlier, Paul Huber completed his PhD thesis on the 

philosophical foundations of actuarial economic models310. We will refer again to this material of the 

1980s and 1990s as we proceed through Part Two. Interestingly, most of it presented a scepticism 

about the methodology of positivism in social science that was at odds with much of social science 

practice of the time, and that was increasingly at odds with how actuarial methodology had been 

developing since the 1970s.  

We will now attempt to identify the key general characteristics of actuarial science as a scientific 

discipline. This will allow us to identify which different themes of philosophy of science may have 

particular implications for the methodology of actuarial science. Given this characterisation of 
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actuarial science, we will then be in a position to determine the most significant areas of 

methodological consideration that arise and their potential implications. 

5.2 General characteristics of actuarial science as a scientific discipline 
Let us briefly re-cap Part One’s discussion of the scientific method and its application in the natural 

and social sciences. From there we will then attempt to characterise the nature of actuarial science 

and find its natural place in this methodological framework.  

A re-cap of some key ideas from Part One 

In Chapter 2, the hypothetico-deductive method was presented as a key model of the logic of the 

scientific method. This method describes empirical relationships between phenomena of interest via 

scientific laws that are deduced from an axiomatic description of the relevant phenomena. 

Sophisticated and mature sciences may have a hierarchy of laws, with the most general and 

theoretical high-level hypotheses being used to deduce many wide-ranging lower-level hypotheses 

that are each capable of direct empirical testing. Empirical support for the higher-level hypotheses is 

derived from the empirical success of lower-level hypotheses. Empirical support for the lower-level 

hypotheses is indirectly derived from the empirical success of other lower-level hypotheses that 

belong to the same hierarchy of theories. The more diverse and numerous the empirically successful 

lower-level hypotheses, the greater the support for the higher-level theory and each of the various 

lower-level hypotheses. These hierarchical systems of theories can be considered as one 

interpretation of Kuhn’s idea of a paradigm, but this terminology was not used by the logical 

empiricists who fully developed the hypothetico-deductive method in the 1950s. 

Depending on philosophical taste, these scientific laws can be interpreted as a description of (or at 

least a good approximations to) reality and truth (realism), and hence provide a form of causal 

explanation for the joint behaviour of particular phenomena; or the laws can merely be regarded as 

a form of efficient and useful quantitative description that renders apparently complex interactions 

into simpler relationships (instrumentalism).  

The theory of the hypothetico-deductive method matured in the 1950s in the hands of a school of 

philosophers of science known as the logical empiricists. We saw in Chapter 2.5 that a post-positivist 

protest against some of the tenets of the logical empiricists’ hypothetico-deductive method 

emerged in the 1960s and 1970s. This work highlighted that the hypothetico-deductive could only be 

regarded as an abstract and simplified model of the scientific method. But post-positivism failed to 

produce a superseding model of how scientific knowledge is produced. The hypothetico-deductive 

model remains a good basic foundation from which to understand and describe how scientific 

knowledge is incrementally developed in the natural sciences. 

The greatest methodological complications of the hypothetico-deductive method arguably arise 

when the scientific theory includes probabilistic behaviour for some phenomena. This has 

increasingly become the norm in 20th and 21st century science: quantum theory, the most successful 

theory of the physical sciences of the last century or so, is irreducibly probabilistic; and much of the 

social sciences, with its descriptions of the aggregate behaviour of humanity, are also often couched 

in probabilistic terms. The hypothetico-deductive method can accommodate probabilistic 

statements, but it muddies the logic and creates a new source of fallibility in empirical testing. The 

‘replication crisis’ of modern scientific research is undoubtedly exacerbated by the ubiquitous 

presence of probability statements in scientific theories and empirical generalisations. ‘False 

discovery rates’ are hard to avoid when statistically testing the empirical evidence for theories that 

do not have a high prior probability (in Bayesian terminology) of being correct. Such low prior 

probabilities can arise either from testing bold conjectures in a Popperian sense (see Chapter 2.1); or 



from the vast and indiscriminate searches of thousands of potential relationships that can be 

undertaken by modern machine learning algorithms (discussed further in Chapter 6.3). 

In Chapter 3, we found that much of social science has thus far failed to reach the sophisticated 

state of scientific knowledge described in the above discussion of the hypothetico-deductive 

method. The social sciences have not often been able to develop a theoretical framework that can 

be described as a large hierarchical structure of logically related hypotheses of varying degrees of 

generality and direct testability. In many social science disciplines, empirical work has focused 

mainly on identifying and quantifying low-level empirical relationships rather than deducing testable 

theories that can predict and explain causal relationships. 

Chapter 3 noted an important philosophical divide with major methodological implications for the 

social sciences: there was a school of thought, that can be traced back to Comte’s late 19th century 

publications, that argues that the empiricism and positivism of the hypothetico-deductive method 

can be applied to the social sciences in a fundamentally similar way to that of the natural sciences; 

and there is another school of thought, less homogeneous than the positivist school, but with 

recognisable roots that go back at least as far as Weber’s work of the early 20th century and arguably 

much further, that is sceptical that such a method can achieve success in many fields of social 

science. This scepticism reflects the argument that the phenomena of social science exist in an 

infinitely complex and intrinsically non-stationary environment that makes accurate quantitative 

prediction of their future behaviour practically very difficult or even conceptually impossible. We 

saw in Chapters 3 and 4 that a quite broad array of 20th century thinkers adopted a form of this 

position (Weber, Keynes, Knight, Hayek, Popper, etc.). This argument leads to a rejection of a 

positivist method in social science. That is, theories of the social science should not be expected to 

generate reliably accurate empirical predictive success. This does not imply that social science is 

worthless or that it has no legitimate role for theory. Rather, it leads to the idea that theories of 

social science are useful as abstract interpretative studies that can provide deep and valuable insight 

in the hands of experts who understand the theories and their inevitable epistemic gaps with 

empirical reality. 

Chapter 4 focused on economics as an important and methodologically interesting specific field of 

social science. Economics is a field of social science that actuarial science has attempted to make 

increasing use of over the last fifty years. Economics is methodologically interesting because it is one 

of the very few fields of social science that has developed axiomatic theoretical frameworks that 

appear capable of use as part of a hypothetico-deductive method. However, the discussion of 

Chapter 4 found that the economic theory’s application of the hypothetico-deductive method had 

distinctive features when compared to its application in the natural sciences. Economic theory only 

ever attempts to provide a highly partial description of reality. As a result, it is usually impossible to 

empirically test the theory – its quantitative predictions do not apply to our empirical reality and it is 

generally not possible to artificially create the experimental conditions where the predictions do 

apply. This, together with a general subscription to the scepticism of social science positivism that 

was discussed in Chapter 3, led us to the conclusion that economics should not be regarded as a 

positive science in the sense that it is capable of reliably accurate quantitative predictions. The 

chapter did, however, emphatically endorse economics as a powerful interpretative study, and 

identified examples where actuarial science could gain deep and practically useful insight when 

economic theory is used in this way. 

The anatomy of actuarial models: cashflow projections and discount functions  

Let us now consider actuarial science and where it may fit into the above methodological schema. As 

argued above, actuarial science encompasses a wide array of methods, techniques and knowledge, 



and the boundaries of actuarial science should be determined by the type of questions that are 

being considered rather than by the specific content of the strategy used to answer those questions. 

These questions almost invariably involve some form of financial assessment that is based on the 

projected behaviour of some phenomena (such as mortality rates, inflation rates or corporate 

defaults) that a relevant future event (a term assurance pay-out, the size of a pension payment, the 

size and timing of a bond asset casflow) is contingent upon. (Note that, throughout this work, when 

we write of a model’s projected behaviour for some empirical phenomena, we do not attempt to 

make a distinction between the meanings of verbs such as project, predict and forecast.) 

The most fundamental activity of actuarial science is to quantitatively assess the present value of a 

series of predicted future cashflows. Actuarial models’ output can usually be ultimately expressed as 

the calculation of such a present value. The cashflow projection and the discount function that is 

applied to them may be deterministic or stochastic. Actuaries may also build models that project 

how those present values will behave in the future. Again, this projection may be deterministic or 

stochastic. Most actuarial calculations can ultimately be cast in these terms. 

The calculation of present values, however, is of course not the privileged domain of the actuarial 

profession. Virtually all of financial theory and practice – from arbitrage-free derivative pricing 

theory to a clothing firms’ appraisal of whether to invest in the design of a new range of swimwear – 

can be viewed as a present value calculation. Are there typical properties of the present value 

calculation that are found in actuarial models? To tackle this question, it may be useful to think 

about the present value processes that characterise virtually all actuarial work in a couple of distinct, 

albeit related, dimensions. First, there is the nature of the future cashflows and, in particular, what 

sort of contingency determines the size and timing of the cashflow; and, secondly, there is the 

purpose of the present value calculation, which determines the choice of discount function.  

Typically, the cashflows of an actuarial calculation will have very well-defined contingencies. They 

may depend on the behaviour of financial and economic variables – inflation rates or future asset 

values; and they may depend on the health status, death or survival of a policyholder, or perhaps 

some other policyholder status, such as being made redundant by an employer; or the cashflows 

may depend on some general form of risk and its consequences (losses due to property damages 

caused by a hurricane or a motor accident). These well-defined forms of contingency are usually of a 

form that makes the future cashflows amenable to some form of attempted prediction via 

quantitative empirical analysis of relevant data. However, almost invariably, the phenomena that 

actuaries attempt to predictively model will also be similarly modelled by experts outside the 

actuarial profession. Demographers also model and predict human mortality. Economists also model 

and predict inflation rates. Meteorologists model and predict hurricanes. Rating agencies model and 

predict corporate defaults. 

What about the discount function? Are there forms of discount function that uniquely exist in the 

privileged professional domains of actuaries? Again, not really. There are some forms of present 

value that actuaries calculate and use that have a distinctive actuarial flavour, and some that are 

similar or identical to the present values that are assessed by other financial professionals. For 

example, the present value may be intended to assess the fair value of a financial assets (say a loan 

or a mortgage) and in this case the valuation methodology and the purpose of the valuation will 

likely be very familiar to other financial professionals such as accountants, economists and 

investment analysts. Nonetheless, the combination of the type of contingency together with the 

purpose of the present valuing may create a distinctive actuarial role. For example, the fair valuation 

of a mortality-contingent asset such as a lifetime mortgage would generally involve a significant role 

for actuaries even though most of the required technical expertise could arguably be provided by a 



combination of accountants (fair valuation expertise), demographers (mortality modelling expertise) 

and economists (expertise on the valuation of contingent economic cashflows). 

There are also many examples of other present valuing processes in actuarial science that have a 

more distinctive actuarial flavour: the assessment of a prudent amount of capital to hold to support 

the long-term risks on an insurance balance sheet; or the amount of assets that a Defined Benefit 

pension fund should hold today such that the fund will, on average and under a given investment 

strategy and contribution policy, meet its future pension liability cashflows, for example. These 

processes may involve a logic and method that is less recognisable to non-actuarial finance 

professionals. But here again we may note non-actuarial parallels. For example, some forms of 

financial institution (such as banks) have assessed prudential capital requirements for centuries 

without any actuarial role being required. 

It is useful for methodological purposes to consider the two fundamental parts of the actuarial 

modelling process, i.e. the projection, prediction or forecasting of future cashflows; and the 

conversion of those cashflows into some form of present value metric; as distinct tasks. They are 

often related: for example, the purpose of the present valuing may determine whether the cashflow 

forecast should be made on a best estimate basis or with some margin for prudence; in some special 

cases (such as option valuation), the approach taken to projecting cashflows (the assumed size of 

risk premia) may uniquely determine the discount function to be applied. But, in general, the 

function of assessing those predicted cashflows and the function of converting them into some 

present value metric are separate activities that require different skills and will make use of 

knowledge and theory from different disciplines. 

Most discussions of the methodology of actuarial science and the characteristics of actuarial models 

have focused heavily on the first of these functions: on the projection of future cashflows (and / or 

the projection of asset or liability values). This projection function is, of course, a fundamentally 

important and defining actuarial activity. But the second of these functions, the conversion of a set 

of (deterministic or stochastic) projected cashflows into some form of present value measure, is 

equally important to the output of actuarial analysis. This part of the actuarial process is 

fundamentally driven by an unambiguous definition of the question that the actuarial analysis is 

intended to answer. This can involve some subtlety and, above all else, clarity of thought. It has been 

the greater source of complexity and confusion throughout the history of actuarial thought, and it’s 

a topic that will recur in our discussions of the methodology of actuarial science, particularly in 

Chapter 6.  

The key distinctive characteristics of actuarial science according to Pemberton and Cartwright 

In his notable (and sometimes controversial) actuarial methodology paper311 of the late 1990s, John 

Pemberton summarised his characterisation of actuarial models with three key words: “empirical, 

applied and approximate”312. The discussions of the scientific method in Chapter 2 highlighted that 

all of science can really be characterised by these terms. Pemberton’s point, of course, was that 

these properties were present in the methodology of actuarial science to a greater degree than was 

the case for most other scientific disciplines. Nancy Cartwright, notable as one of the most 

influential philosophers of science of the last quarter of the twentieth century, opened the Staple 

Inn discussion of Pemberton’s paper. She offered an alternative, but complementary, and perhaps 

sharper three-word summary of the distinctive characteristics of actuarial science: “local, bottom-up 
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and skill-based”313. We now attempt to unpack what philosophers of science mean when they 

describe actuarial science in such terms. 

Actuarial science applies knowledge, concepts and ideas from both the natural and social sciences. It 

is, in the main, concerned with phenomena related to individual human behaviour (which is 

estimated by attempting to group people into homogeneous groups); and with phenomena 

influenced by the aggregate behaviour of human society (future economic conditions and financial 

asset prices, for example). Contingencies such as weather and long-term human longevity trends 

might be offered as examples of phenomena from the natural sciences that are of interest to 

actuarial science, but even these cases are clearly influenced by the effects of human society, 

especially over the long-term. So, at its core, actuarial science would seem to be a social science. 

Actuarial science is not, however, primarily concerned with the development of new scientific 

knowledge from the study of the social behaviour of humans. Actuarial science is the body of 

technical knowledge that is used in the professional activities of actuaries. Theoretical knowledge – 

for example, scientific models of causation that can explain empirical relationships - is therefore only 

relevant to the extent it is useful in furthering professional actuarial activities. It is in this sense that 

actuarial science can be considered an applied science. And, in light of the above paragraph, we may 

go a step further and refer to it as an applied social science.  

Chapter 3 noted that the hypothetico-deductive scientific method does not generally play a major 

role in most of social science (with the possible exception of economics, which, as noted in Chapter 

4, tends to apply it with its own unique methodological features). The quantitative empirical 

relationships that social scientists analyse tend not to be developed by means of an axiomatic 

theoretical system. As an applied social science, it is therefore unsurprising that we should find that 

actuarial science also does not typically proceed by the use of such systems (Gompertz 

notwithstanding!). Rather, in actuarial fields such as mortality modelling or the modelling of general 

insurance risks, the modelling tends to be strongly empirical. That is, the relationships are derived 

directly from examination of empirical data, rather than being deduced from an abstract theoretical 

framework and then tested against empirical evidence. Actuarial science deals with empirical 

generalisations rather than laws of nature. The general absence of theoretical explanatory 

frameworks for the behaviour of the phenomena of interest and the emphasis on immediate 

empirical relationships gives actuarial science its empirical character.  

The description of actuarial science as bottom-up is closely related to its empirical and applied 

character described above. Actuarial model-building is bottom-up in the sense that the relationships 

are built up from low-level inductive generalisations, rather than being developed top-down from 

the deductions of a higher-level theoretical framework. Actuaries are not searching for universal 

truths, but merely for efficient and predictively powerful descriptions of the relationships between 

phenomena of interest (these bottom-up relationships may, nonetheless, be complex and non-

linear).  

The characterisation of actuarial science as empirical, applied and bottom-up does not imply that 

actuarial science must reject any use of a causal or explanatory understanding of the phenomena it 

studies when building actuarial models (though Pemberton came close to suggesting it does). 

Actuaries may sometimes use model structures that make use of theoretical insights that have 

usually been generated in other scientific disciplines. Uninterpreted historical data may often be 

highly inconclusive, and causal explanatory structures, where they exist in reliable form, can be of 

 
313 Cartwright in Pemberton (1999), p. 178. 



much use. ‘Cause of death’ longevity model structures will make use of scientific output from the 

medical and related professions. The description of the future evolutions of interest rates may make 

use of arbitrage-free term structure models from financial economic theory. Forms of weather 

contingent events may rely on climate change forecasts which may be developed using causal 

theoretical structures from the natural sciences. But it is not the general objective of actuarial 

science to develop such causal or explanatory theories. In an actuarial setting, they are only useful as 

a means to another end (but may be highly useful nonetheless). 

Our limited understanding of the complex nature of the underlying processes that drive the 

behaviour of phenomena of actuarial interest, together with limited relevant empirical data, mean 

that the relationships identified in these models cannot generally be considered as exact. The 

empirical generalisations that form the basis of actuarial cashflow projections are therefore almost 

always explicitly recognised as approximate. Given the tentative and fallible nature of this modelling 

knowledge, it is natural that the predictive performance of the model is closely monitored over time, 

with the actuary ready to make modelling adjustments that reflect the information gleaned from 

newly acquired experience. 

Actuarial work will often be interested in the outcomes for very specific risks. A pensions actuary 

may be predicting the mortality experience of the pension fund of a Welsh coal mining firm; a motor 

insurance pricing actuary is ultimately attempting to project the behaviour of the individual driver 

who may buy the insurance; and like-wise for the life actuary attempting to price individual annuities 

or life assurance. The pensions actuary may choose to adjust the latest national mortality projections 

to reflect anticipated differences in the likely longevity of the specific pension fund relative to the 

pool of lives considered in the wider study. The general insurance or life assurance pricing actuary 

may use a dozen or more risk factors to attempt to accurately predict the insurance policy’s 

cashflows (although cost and ethics may restrict the number of risk factors that are used). When a 

life actuary sets the lapse rate assumption for their company’s assurance product, he or she may 

choose to use a different assumption from that implied from their recent policyholder experience, 

because of the anticipated impact of a new change in the surrender value basis. And so on. These 

adjustments make the models local. It is implicit in Cartwright’s discussion that she anticipates these 

local adjustments can deliver some predictive success. 

Often, these differences in assumptions may not be derived entirely from empirical data because the 

data does not exist in the granularity required. Instead, these adjustments to the actuarial model will 

be made with the use of judgement and modelling skill. This use of judgement does not fit naturally 

with the objectivity of positive science. The use of judgement in the building and application of 

models is what Cartwright is referring to when she says actuarial science is skill-based. Pemberton 

also regarded this as a fundamentally important element of the practice of actuarial science: “The 

skill of the modeller forms an integral part of the actuarial method”314. The choice and structure of 

the model, the selection of empirical data for use in calibration, and the ‘local’ adjustments that are 

made to that calibration for use in the specific intended purpose are all important elements of the 

model-building process that require skill and judgement. 

The above discussion has highlighted the main ideas behind philosophers’ use of the descriptive 

terms empirical, applied, approximate, local, bottom-up and skill-based to characterise the 

methodology of actuarial science. These descriptions and the ideas behind them (other than 

Pemberton’s apparent antipathy towards the utility of any theory) are largely uncontroversial - there 

probably isn’t a great deal in the above characterisation of aspects of actuarial modelling that many 
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actuaries would find reason to strongly object to. Nonetheless, the uncontentious nature of this 

characterisation of actuarial science does not imply that it is absent of any significant methodological 

issues. In particular, as an empirical and applied social science, we cannot avoid a fundamental 

question: can social or socio-economic phenomena be predicted in a reliably accurate way? The 

answer to this question dictates the form of knowledge that can be delivered by actuarial models. 

Can the actuarial model provide a reliable description (probabilistic or deterministic) of the future 

behaviour of the given phenomena of interest? Or does the deeply complex nature of the 

phenomena of actuarial interest place significant epistemic limits on the predictive knowledge that it 

is possible to obtain? In which case, can actuarial models be better viewed as interpretative tools 

that can provide useful insight? We will explore these questions further in Chapter 5.2 and beyond.  

Beyond Cashflow Projections 

Before that, however, we will offer one further observation of Pemberton and Cartwright’s 

characterisation of actuarial science and its methodology: it is, in an important sense, incomplete. 

Their characterisation can provide a fine description of the methodological context for the 

projection of cashflows in actuarial models. It does not, however, address the second key element of 

the actuarial modelling process – the choice of discount function that is used in the conversion of 

the cashflows into some form of present value metric.  

This part of the actuarial modelling process is not a form of scientific inference that can fit naturally 

within the field of study of the philosophy of science. It is therefore difficult to make an analysis of 

the methodological considerations that accompany it, and that is perhaps why it has not been the 

subject of much philosophical inquiry. The choice of discount function is often not a problem of how 

to answer an inferential question, but rather of deciding which question is relevant and useful to 

attempt to answer. Philosophy can help indirectly by helping to inform on the extent to which a 

given question can be reliably answered. But that, in itself, is not sufficient to determine if the 

answer is useful. This is perhaps ultimately a matter of professional judgment, based on an 

understanding of what the actuarial client is seeking to achieve. 

The choice of discount function is nonetheless fundamental to actuarial output – to its meaning, its 

usefulness, the questions that it answers and the purpose that it serves. And, as noted above, the 

crux of the matters concerning most of the historical (and perhaps contemporary) controversies in 

actuarial science are to be found in this part of the actuarial modelling process.  

Chapter 6’s detailed discussions of some specific contemporary actuarial issues will reinforce this 

point. For now, the reader may note how a diverse range of contemporary difficult actuarial topics 

such as the level of advance funding of Defined Benefit pensions; the definition of insurance risk-

based capital requirements; and the fair valuation of illiquid assets, the source of the complexity 

arises primarily in the choice of discount function that is applied to the projected cashflows rather 

than in the cashflow projection itself. That is, in all three cases, two actuaries could wholly agree on 

the projected distribution of future cashflows, and yet come to quite different conclusions as to their 

actuarial implications for funding, capital or valuation. 

5.3 Some key methodological considerations that arise  
Several methodological questions naturally follow from the description of the characteristics of 

actuarial science developed in Chapter 5.2, such as: 

• The ‘local’ nature of actuarial models was emphasised by Cartwright as a fundamental 

feature of actuarial modelling methodology, and one that may deliver predictive success, at 

least to an approximate degree. Is this assertion universally reasonable? Are there areas of 



actuarial modelling where ‘localism’ cannot ensure (approximate) predictive reliability? Or 

where the actuarial modelling is necessarily not local? In short, is a belief in the local nature 

of actuarial modelling as a route to delivering predictive reliability a case of hope over 

experience?  

• Whilst actuarial models may be local with reference to the characteristics of a particular risk 

or contingency, they are often not local in time. That is, actuarial models may be used to 

project over very long time horizons. The results of the model may depend on assumptions 

about the paths of phenomena over very wide spans of time. In the domain of applied social 

science, with the complexity of non-stationarity that it often entails (See Chapters 3 and 4), 

can predictive success be reasonably expected over these time horizons? And how does the 

process of monitoring and updating modelling assumptions work when the assumption 

refers to what will happen in 20 or 40 years? 

• Cartwright described actuarial modelling as skill-based. Can modelling skill be tested or 

evaluated (ex-ante or ex-post)? 

• Do the axiomatic deductive theories of economics have a role to play in the empirical and 

approximate world of actuarial science? 

These questions summarise the subjects covered by the remainder of Chapter 5. 

5.4 Localism and the prospects of predictive success in actuarial modelling 
Cartwright’s description of actuarial science suggests actuarial models may be able to achieve 

predictive success (albeit in an ‘approximate’ way) for socio-economic phenomena in ways that have 

often eluded other fields of social science. Her characterisation suggests that this success can be 

obtained in the actuarial domain via two advantages potentially open to actuarial modelling: by 

limiting the ambition of actuarial models to only strive for ‘local’ performance; and through the 

deployment of actuaries’ modelling skill and expert professional judgment in the model-building 

process. 

At the same time, Cartwright acknowledged that the philosophy of science has made little progress 

in understanding or evaluating modelling skill. This raises an obvious question: is such a sanguine 

view of assured actuarial modelling performance therefore merely wishful thinking? It is certainly 

tempting to think that many of the sceptics of positive social science that we met in Chapters 3 and 4 

– Max Weber, Frank Knight, John Maynard Keynes, Karl Popper and Friedrich Hayek, for example - 

would believe so. Interestingly, Frank Redington, widely viewed as one of the most important 

actuaries of the twentieth century, was also firmly of this sceptical view. We now examine more 

closely what Redington had to say in this regard. 

Redington’s scepticism about the predictive success of actuarial models 

Redington’s essay, Prescience and Nescience, was written late in his life and published posthumously 

in 1986315. It contains the most explicit exposition of his ideas and views regarding actuarial 

methodology. Rather like the economist Milton Friedman’s venture into the methodology of 

economics some 35 years earlier, Redington’s methodological arguments did not make any explicit 

reference to any philosopher’s work and it is unclear how familiar Redington was with the literature 

of philosophy of science that had emerged over his lifetime. Unlike Friedman, Redington’s 

perspective on the methodology of social science was strongly anti-positivist. Redington argued, in a 

similar vein to those such as Knight, Keynes and Hayek, that society and the economy were 

inherently unstable and subject to continuous change: 
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“The continued instabilities we observe in our experience are not the regular instabilities of 

probability theory…the conditions never repeat themselves”.316 

And, he argued, this rendered the behavioural phenomena produced by human society incapable of 

accurate prediction, and made efforts to attempt to do so futile, as the following quotes illustrate: 

“We cannot foresee the future…we cannot foresee forty days let alone forty years.”317 

“The only secure relationship we can have with the long-term future is on the footing that we cannot 

foresee it. We can of course do a great deal to prepare for it but we cannot foresee it.”318 

“If we cannot foresee the future then we cannot! No proliferation of polysyllables or multivariate 

analysis will succeed (other than in deceiving ourselves).”319 

Redington’s points here are familiar from the discussion of philosophy of science that was developed 

in Part One. Inferential techniques, whether simple probability models or more complicated 

probability models or predictive machine learning algorithms of a sort that Redington had not even 

envisaged, all rely on an assumption of a uniformity in the nature of the modelled phenomena and 

the conditions that influence it over time. If that assumption is invalid, the techniques cannot offer 

reliable quantitative predictive accuracy. 

Importantly, however, Redington did not argue that this meant that actuarial modelling was a 

pointless activity: 

“Such an instrument [actuarial model], though it does not help us foresee the future, does the next 

best thing; it enables us to familiarise ourselves with what the future may have in store. Thus 

equipped we should be able to home upon our targets with alertness and sensitivity. And that is all 

we can hope for.”320 

I think Redington is arguing here that actuarial models should be used, in the jargon of Chapters 3 

and 4, interpretatively rather than positively. That is, the models should be used to provide useful 

insights to experts who understand them, and not to attempt to generate the ‘true’ numerical 

answer. Redington argued this meant actuaries should use simple models, and he expressed 

particular scepticism about complex computer-based stochastic models. 

I, perhaps unsurprisingly for someone whose career has centred on their application, do not share 

Redington’s particular scepticism about the potential usefulness of stochastic models. Simplicity is 

always a virtue, whether in the setting of an interpretative ideal type or a positive hypothetico-

deductive theory. But there is also always a trade-off between simplicity and the insight that can be 

delivered for a complex problem. That trade-off is specific to the particular problem at hand. There is 

nothing special about ‘stochastic’ in that trade-off. For some problems, a stochastic model may 

provide interpretative insights in a way that deterministic projections cannot, and the additional 

complexity the model brings may be a necessary and worthwhile cost. There is no obvious 

philosophical or actuarial difficulty with that. And just as for any other model (or ideal type), the user 

must have sufficient expertise and understanding of the model in order for its output to provide 

them with useful insight.  
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Let us now move beyond these general methodological discussions and consider some specific 

evidence. How accurately have major actuarial models predicted key actuarial phenomena? This is 

clearly a very broad question that could form the basis of a very extensive empirical investigation. 

For now, we will make do with a couple of examples from some major fields of actuarial modelling. 

Actuarial Models and Long-term Predictive Success? Case Study (1): Mortality rate projections 

Actuaries have been estimating mortality rates and using these estimates in cashflow projections for 

hundreds of years. The right to the claim of the first actuarial mortality table is subject to some 

contention, but candidates would certainly include Halley’s 1693 Breslau table and Price’s 1772 

Northampton table. These mortality tables were based on general population data. As actuarial 

institutions such as life offices and pension funds developed in scale, actuaries started to use the 

data generated directly by the experience of their policyholders and /or members rather than the 

population at large (a simple example of modelling localism in action). By the early 1800s, life offices 

in countries such as Britain and the United States were pooling their experience data to create very 

large experience datasets that could support a richer data analysis – for example, allowing the 

modelling of mortality rates as a function of the duration in-force of the policy as well as the age and 

sex of the policyholder321. 

Mortality rates have also been used as an illustrative topic in the works of several philosophers of 

probability. We saw in Chapter 1.1 how the Oxford philosopher A.J. Ayer used mortality rates as an 

example in his analysis of the reference class problem in frequentist probability. Von Mises, the 

objectivist, viewed death as a ‘social mass phenomena’, suggesting it fulfilled his criteria for 

collectives of uniform and repeatable events322. He did allude to the non-stationarity of historical 

mortality data by accepting ‘no figure of this kind, however exact at the moment of its 

determination can remain valid for ever’. But he also argued this non-stationarity was merely a 

difference in degree rather than a difference in kind from that found in physical phenomena, noting 

that even the force of gravity on the earth’s surface will change over time323. Some philosophers of 

probability have historically even ventured on to the topic of mortality improvement projection. In 

1888, the Cambridge philosopher John Venn, who we met several times in Part One, wrote:  

“At the present time the average duration of life in England may be, say, forty years; but a century 

ago it was decidedly less; several centuries ago it was presumably very much less; whilst if we 

possessed statistics referring to a still earlier population of the country we should probably find that 

there has been since that time a still more marked improvement. What may be the future tendency 

no man can say for certain.”324 

The statistical estimation of the mortality rates of a group of people, be it a group of life assurance 

policyholders or the population at large, is naturally backward-looking. But, as John Venn and 

Thomas Young pointed out, mortality rates will change over time. Life and pensions actuaries 

therefore often need to make forecasts of the mortality rates that will be present many decades into 

the future. Interestingly, until recent decades, this task of quantitatively projecting how today’s 

mortality rates will change over time didn’t receive as much attention as the detailed estimation of 

recent mortality rates. Prior to the final quarter of the 20th century, there was certainly an actuarial 

understanding that mortality rates were evolving and generally improving over time, but allowance 

for this future improvement was usually made through some ad-hoc adjustments to the-then 
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prevailing mortality rate estimates, rather than through the use of a more formal modelling 

approach.  

The UK actuarial profession’s first formulaic approach to mortality improvement projection was 

published in 1955325. Since then, evermore complex approaches to the projection of mortality 

improvements have been developed. This can be seen partly as an example of the broader tendency 

towards greater use of more complicated quantitative models in general over this period of history, 

but also partly as a result of an increasing awareness that, for long-term longevity business such as 

annuities, the projection of the change in mortality rates over the individual’s lifetime could be more 

financially important than an accurate estimate of their mortality rate at the start of the period. 

Moreover, this importance has been amplified by the changes in economic conditions over recent 

decades: the financial consequences of forecasting errors in long-term mortality improvement 

projections are greater in the early 21st century’s low long-term interest rate environment than in 

the higher interest rate environment of the 1960s or 1970s. 

Predicting how mortality rates will change over 20, 30 or 50 years is a profoundly difficult challenge. 

Despite the proliferation of modelling attempts, most actuaries would tend to agree that it is an area 

of inherent uncertainty and an area where different expert opinions may suggest materially different 

predictions. But the assumption is unavoidably important to the long-term projection of longevity-

dependent cashflows such as those found in Defined Benefit pensions or life assurance annuity 

portfolios. 

Let us now briefly return to Frank Redington and, in particular, his views on mortality rate 

prediction. Redington wrote extensively on mortality modelling326. He believed that there was some 

physiological or genetic limit to human life, and that this limit may possibly be capable of estimation. 

But he also believed that environmental factors kept human lifespans far from this limit, and that 

those factors were ‘a clumsy package of very varied articles’ such that ‘the search for any law other 

than a rough graduation is in vain’327. The anti-positivist leanings he expressed in Prescience and 

Nescience are consistent with this (much earlier) perspective and imply that making reliably accurate 

long-term mortality rate projections is simply not possible.  

Can we examine the actuarial records to determine the historical accuracy of actuaries’ long-term 

mortality predictions? This is perhaps more difficult than it sounds. Firstly, our sample size is very 

restricted - there are only one or two non-overlapping 30-year historical periods during which 

actuaries have been publishing explicit quantitative long-term mortality rate projections. So, a 

formal, rigorous statistical study of the historical performance of long-term actuarial estimates of 

mortality rates is not easily undertaken.  

As an anecdotal starting point, however, we can look back over the last 30 or 40 years and consider 

what long-term projections have been made and how they have changed. Exhibit 5.1 charts these 

historical evolutions of long-term mortality rate projections. It shows how the UK actuarial 

profession’s estimate of the mortality rate of a 70-year old in the year 2020 has changed over the 

last 40 years. 

 
325 See Browne and Owen (2019) for wider discussion of the history of actuarial mortality improvement 
projections. 
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Exhibit 5.1: Historical actuarial estimates328 of the mortality rate of a 70-year old male in 2020 

 

The mortality rate forecasts shown in Exhibit 5.1 are quite thought-provoking. They show that, 

although actuaries like to quote mortality rates to six significant figures, it is quite possible that the 

first significant figure of a 30-year mortality rate projection will be wrong. In the 1980s, actuaries 

(along with other professions and scientific communities with an interest in human mortality) 

strongly under-estimated the rate of improvement in the mortality rates of elderly people that 

would occur in the UK during the 1990s. And if records were readily available, they would likely show 

that mortality improvements for the 50-70 age group were significantly under-estimated during the 

1970s and ‘80s. Going further back in history, the improvements in the mortality of infants would 

 
328 The data in this chart has been calculated from the mortality tables and mortality improvement formulae 
and spreadsheets provided by the Continuous Mortality Investigation (CMI). The 1980 estimate is derived from 
the base mortality rate for a 70 year-old male in a(90) (0.23412). This is the 1980 estimate of 1990 mortality. 
The mortality improvement factor from 1990 to 2020 is derived using the ‘twentieths of age’ rule described in 
the Preface of a(90) Tables for Annuitants (1979). That is, the mortality improvement factor uses the ratio of 
the mortality rate of a 68.5 year old to the mortality rate of a 70 year-old in a(90) (0.8854). The 1990 estimate 
is derived from the base mortality rate for a 70 year-old male in IM(80) (0.030309) and the 2020 mortality 
improvement factor (0.664) is derived from the formula presented in CMI Report 10, p. 52. The 1999 estimate 
is derived from the base mortality rate for a 70 year-old male in IML(92) (0.01838) and the 2020 mortality 
improvement factor (0.569) is derived from the formula presented in CMI Report 17, p. 93. The 2009 estimate 
is derived from the base mortality rate for a 70 year-old male in IML(00) (0.01625) and the 2020 mortality 
improvement factor (0.558) is derived from the CMI 2009 Mortality Projections Model. The 2015 estimate is 
derived from the base mortality rate for a 70 year-old male in LML(08) (0.012301) and the 2020 mortality 
improvement factors produced by the CMI 2015 Mortality Projections Model (0.755). The 2016 and 2017 
estimates also use the base mortality rate for a 70 year-old male in LML (08). The 2016 estimate uses the 2020 
mortality improvement factor generated by the CMI 2016 Mortality Projections Model (0.781) and the 2017 
estimate uses the 2020 mortality improvement factor generated by the CMI 2017 Mortality Projections Model 
(0.794). The mortality improvement factor calculations from 2009 onwards require a long-term mortality 
improvement rate parameter assumption and 1.5% has been assumed in all cases here. The IFoA 2017 
Mortality Bulletin states 1.5% is the most common parameter assumption used by actuaries (p. 20). 
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likely have been under-estimated during the second half of the 19th century and early part of the 20th 

century329. In recent years, an unexpected slowdown in mortality improvement rates has been 

observed across much of the developed world, and there is currently much debate and uncertainty 

around whether and how this slowdown should be extrapolated into the future. 

To be clear, the above observations are not offered as grounds for criticising the quality of the 

modelling that has been used to produce the estimates plotted in Exhibit 5.1. It is not being 

suggested here that the modelling methods used in producing these estimates could have been 

readily improved in some obvious way. Rather, the argument offered here is that it is simply not 

possible to make reliably accurate long-term predictions of mortality rates. The drivers of long-term 

changes in longevity are the product of a non-stationary and inherently unpredictable social, 

cultural, political, economic, technological and physical environment. It is just too complex for 

reliably accurate quantitative prediction.  

Consider the breadth of factors that may impact on long-term mortality improvements. Well-

documented examples include: the outbreaks of new disease epidemics (consider HIV / AIDs in 

Africa in the early 2000s; the resurgence of old epidemic diseases and infections due to increases in 

antibiotic resistance; changes in lifestyle (obesity leading to type 2 diabetes, changes in smoking 

habits and alcohol consumption); political and economic factors (such as the State’s commitment 

and ability to deliver a quality health care system, consider Russia in the 1990s); the levels of health 

spending330 (which some studies have shown can be correlated with mortality rates331); income 

inequality and the potential divergence in longevity trends across socio-economic groups332; 

scientific and medical developments (consider how antibiotics vastly reduced deaths from infectious 

diseases in the 1950s; or how child mortality rates were significantly reduced by vaccination in the 

19th century); and technological developments such as biometric monitoring and the ‘Quantified 

Self’ and how they may alter behaviours and lifestyles in ways that are consequential for mortality 

rates. 

Much progress has been made in understanding what has driven historically observed mortality 

improvement patterns. It is now understood that much of the improvement in longevity that 

occurred in adults in the UK in the 1980s and 1990s was due to a reduction in deaths from 

cardiovascular disease (which, in turn, was partly the result of improved medical treatment 

techniques and technology and partly the result of a reduction in key behavioural risk factors such as 

smoking). Such analysis, whilst illuminating and useful for many purposes, still cannot be used to 

reliably predict how the propensity of various causes of death will change in the future. It is, of 

course, possible to say that the rate of change in cardiovascular disease as a cause of death cannot 

continue to fall at the rates it fell in the 1980s and 1990s, for the simple reason that it cannot cause 

a negative number of deaths. But beyond that trivial observation, little about the rates of different 

causes of death seems very predictable. 

 
329 See, for example, Weiss et al (2019) for analysis of which age groups have contributed most to 
improvements in life expectancy during different historical periods. 
330 There is a working hypothesis that the austerity policy of the UK government during the years following the 
global financial crisis, and the relative limits on social and health spending that were associated with those 
policies, are casual factors in the slower pace of mortality improvement that was observed in those years. See 
IFoA (2017), p. 15-17. 
331 See Oliver (2019) for a fuller discussion and further references. 
332 Between 2001 and 2015, English female mortality improved by 28% in the least deprived group but by only 
11% in the most deprived group. See Browne and Owen (2019), p. 212. 



The future evolution of the drivers of changes in human longevity, how they interact, and how they 

impact on different sections of society, are all highly uncertain and cannot be inferred from historical 

data or deduced from some easily identifiable causal structure. It might be objected that this point is 

well-recognised by the actuarial profession and always has been. After all, insurance companies have 

always held prudential capital in recognition of the risk that their long-term mortality projections 

could be materially wrong. Moreover, in recent decades, actuaries have developed stochastic 

models of mortality risk. The first was published in 1992333. Since then, the number of such models 

has proliferated, offering model structures of increasing complexity, and producing a range of 

alternative probability distributions for the future evolution of mortality rates. This is a fair and 

reasonable argument. Nonetheless, it is contended here that a clearer recognition of the significant 

epistemic limits to the reliable accuracy that is possible for long-term mortality projections can have 

major implications for the way actuaries build and use actuarial models, and how mortality-related 

risks are managed by the institutions actuaries serve. These implications are explored further in 

Chapter 6.  

Actuarial Models and Long-term Predictive Success? Case Study (2): Interest rate projections 

We next turn to a completely different type of phenomenon for which actuarial science produces 

and makes use of long-term predictions: the long-term interest rate.  

Actuaries use long-term forecasts of the behaviour of the long-term interest rate for a range of 

purposes in various fields. The analysis of the advance funding of defined benefit pension funds is a 

significant example. There, actuaries use their projections of the behaviour of the long-term interest 

rate to estimate the pension fund’s required long-term contribution rate; and to estimate the 

amount of assets required today to fund liability cashflows as they fall due; as well as to advise on 

related topics such as the pension fund’s investment strategy. In life assurance, long-term 

projections of long-term interest rates can be used to analyse the run-off solvency of the business, 

and to analyse the long-term outcomes related to investment and risk management strategies.  

Before the 1980s, actuaries tended to use only deterministic projections of these interest rates. The 

recommendations of the Maturity Guarantee Working Party334 introduced the stochastic modelling 

of equity returns into actuarial practice (specifically, for the purposes of reserving for long-term 

maturity guarantees in unit-linked life policies). And David Wilkie, one of the prominent members of 

that working party, further developed the stochastic modelling of equity returns into a broader 

stochastic asset model that also included the modelling of interest rates and inflation (and, later, 

property). This broader model became known as the Wilkie model and was widely used by UK 

actuaries in life and pensions throughout the late 1980s, 1990s and, perhaps to a slightly lesser 

degree, well into the 21st century.  

Wilkie’s paper presenting this long-term stochastic asset modelling was published in 1984335. This 

research represents the earliest formal stochastic actuarial model of the behaviour of the long-term 

interest rate. The model was calibrated to historical data from 1919 to 1982. This may sound like a 

long historical period and a lot of data. But bear in mind that the model is explicitly intended for 

long-term projection336. What do we mean by long-term? In actuarial terms, this usually means 

somewhere between 10 and 40 years. The calibration data provides a sample of only 7 non-

overlapping 10-year observations, and even less for longer horizons. The UK long-term interest rate 

 
333 Carter and Lee (1992) 
334 Ford et al (1980) 
335 Wilkie (1984) 
336 See Wilkie (1984), Section 1.3. 



varied between less than 3% and almost 12% between 1919 and 1982337. Even in a statistically 

perfectly behaved stationary environment – Knight’s world of measurable risks - a sample of 7 can 

provide quite limited information about the phenomenon’s average level, given this degree of 

variability. And it can provide much less information about the behaviour in the tails of the 

probability distribution (again, even before considering the potential difficulties of immeasurable 

uncertainty that may arise from non-stationarity). 

So, before even turning on our computers, it is clear that Wilkie set himself an ambitious objective 

when he set out to develop a model that could reliably estimate the multi-decade tails of the long-

term interest rate. Let us now examine what the model projected. Exhibit 5.2 shows the percentiles 

of the distributions of the future long-term interest rate that were produced by the model in 1984. 

The chart also plots the actual long-term interest rate that occurred over this period338. 

Exhibit 5.2: Percentiles of the projected long-term interest rate distribution from Wilkie (1984) model, 

and the actual long-term interest rate path 

 

The UK long gilt yield was 10% in 1984. The Wilkie model generated a long-term median for the 

projected long-term interest rate at a similar, if slightly lower, level – the model produced a median 

value for the 2018 long rate of 9%. This was consistent with the model’s assumption of an 

unconditional average inflation rate of 5% and an unconditional average real interest rate of 3.5%. 

According to the model, there was a probability of 1% that the long gilt yield in 2018 would be 

greater than 15%, and a 1% probability that it would be less than 4%. The actual 2018 outcome for 

the long-term interest rate was 1.8%. This was a deep outlier in the context of the projected 

distribution - an outcome this low was a 1-in-10,000 event according to the model. In summary, the 

 
337 Data freely available on Bank of England website. 
338 In the Wilkie (1984) model, the long-term interest rate is represented by the modelled consol yield. For the 
actual long-term interest rate, the consol yield has been used from 1984 to 2016; and the 30-year gilt yield has 
been used for 2017 and 2018. Historical consol yield data is freely available from the Bank of England website. 
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1984 model attached virtually zero probability to the long-term interest rate of 2018 being as low 

as the actual 2018 long-term rate.  

Wilkie presented an updated version of his stochastic asset model in 1995339. This update re-

calibrated the model with the dataset extended to 1994. Wilkie also decided that this time he would 

exclude some of the early years of the dataset because they were in the close aftermath of the First 

World War, which he now judged was an exceptional period that should be ignored by the 

calibration process. So, the updated model was calibrated to the period 1923 to 1994.  

The 1995 update also included a model for the index-linked gilt yield340. Index-linked gilts have been 

issued by the UK government since 1981. At the time of the 1984 paper, there was insufficient data 

to calibrate a model. But Wilkie judged that enough experience had been observed by 1995 to 

produce a long-term stochastic model of index-linked yields. Exhibit 5.3 shows the percentiles of the 

distributions of the future index-linked yield that were produced by the model and its calibration in 

1995. The chart also plots the actual long-term index-linked yield that occurred over this period.341 

Exhibit 5.3: Percentiles of the projected index-linked gilt yield distribution from Wilkie (1995) model, 

and the actual index-linked yield path 

 

Exhibit 5.3 provides a good illustration of the perils of extrapolating historical socio-economic data 

for the purposes of making long-term probabilistic statements.  

The above analysis suggests the Wilkie model(s) failed to attach meaningful probabilities to the long-

term interest rate outcomes, for both nominal and index-linked rates, that have been realised since 

the publication of the model. There are (at least) three alternative ways of interpreting these 

findings: 

 
339 Wilkie (1995) 
340 Wilkie (1995), Section 9. 
341 Historical index-linked yield data is freely available from the Bank of England website. 
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1. It could be argued that the models delivered something closely approximating the true 

probability distributions for the future behaviour of the long interest rate, and the true 

probability distributions for the future index-linked yield, and something extremely unlikely 

occurred in both cases.  

2. Alternatively, it could be argued that the probabilities of interest rates as low as those that 

actually occurred occurring were much higher than the probabilities produced by the 

models. It might further be argued that a better model and calibration could have been 

developed that would have performed much better in these respects.  

3. Or we might assert that the nature of interest rate behaviour creates a natural epistemic 

limit that means it is simply is not possible to develop long-term models for interest rates 

that can make reliably accurate probability statements about the range of outcomes that 

that will occur. 

Let’s take each of these three alternative arguments in turn, starting with the first one. As noted in 

Chapter 2’s discussion of the falsification of probability statements, it is generally not possible to 

irrefutably prove that statements of the type used in the first argument are wrong – there is always 

a chance that the model was correct to attach a very low probability to the given event happening, 

and the very low probability event did indeed occur. In the particular instance of the long-term 

outcome for the long-term interest rate, it requires a highly unlikely event to have occurred – one 

with a 1-in-10,000 probability. It is a possible explanation, and if we can convince ourselves that the 

probabilities that should be attached to answers 2 and 3 are lower, then we could conclude it is the 

most likely explanation (an example of a Bayesian probability logic that does not attempt to quantify 

the probabilities attached to these three statements!).  

But in the case of the index-linked yield, this ‘non-falsifiable’ logic does not apply. That is because 

the model assumes that index-linked bond yields are lognormally distributed. This means the model 

says that it is impossible for the index-linked yield to be less than zero. As can be seen in Exhibit 5.3, 

index-linked gilt yields have been less than zero since 2011. As a result, it can be concluded with 

certainty that the index-linked yield model did not produce an accurate representation of the true 

long-term probability distribution of the index-linked yield. So, we conclude that the first argument 

is a deeply unsatisfactory explanation of what is observed in exhibits 5.2 and 5.3. 

Let’s move on to the second argument. The Wilkie (1984) model has received some significant 

criticism from other actuaries and statisticians with respect to the statistical methodology that was 

employed in the choice of model structure and its calibration342. And we noted above that Wilkie 

himself revised the models and their calibrations in 1995. This resulted in some material changes in 

the projected probability distributions of the inflation rate and the consol yield343. Furthermore, 

there is an array of subjective modelling and calibration choices that could have been made in 1995 

that would have produced different probability distributions for the future levels of the index-linked 

yield. Some of these modelling approaches may be more sophisticated than those used by Wilkie. 

However, it is contended here that no conventional method of modelling and calibrating a 

probability model for the long-term projection of the index-linked gilt yield in 1995 would have 

attached a meaningful probability to the yield being as low as -2% in 2018. And if the model did 

 
342 See, for example, Geoghegan et al (1992); and Huber (1996), Section 8 and 8.4.1 in particular regarding the 
consol yield model and calibration. 
343 Wilkie introduced a more sophisticated model of inflation, with time-varying volatility. These changes 
increased the variability of the projected consol yield.  



suggest such a scenario had a meaningful probability, it would almost certainly have been rejected 

with incredulity by experts at the time. 

It might be argued that actuaries would have rightly rejected such a model as silly because such an 

outcome really was extremely unlikely, and so we are back to argument 1. It is only extremely 

unlikely, however, if it is assumed that the socio-economic environment is statistically stable and 

quantifiably measurable. And all of the model and calibration enhancements that may be described 

under argument 2 have to subscribe to such an assumption. Wilkie’s described the 1995 ARCH 

extension of his inflation model as a way of acknowledging that inflation volatility is non-stationary. 

But really, such a model extension simply describes a slightly more complicated form of stationarity, 

where all the uncertainty in the behaviour of the phenomena still remains quantifiable. Re-quoting 

Redington one more time: ‘If we cannot foresee the future then we cannot! No proliferation of 

polysyllables or multivariate analysis will succeed (other than in deceiving ourselves).’ 

The failure to deliver reliably accurate predictive results is not a consequence of mere sampling 

variation (argument 1), nor of a failure of technical modelling skill (argument 2). It is a consequence 

of the use of a fundamental premise that does not hold in our socio-economic world – the 

assumption of a form of stationarity in the behaviour of empirical phenomena such as interest rates 

and mortality rates. The socio-economic environment is not stationary. It is constantly changing in 

important ways and its implications for inflation, interest rates and most other socio-economic 

phenomena are complex and inherently unpredictable. It always been this way. The only thing we 

can reliably predict is that our socio-economic system will continue to change in unpredictable ways. 

Once we accept that, it becomes clear that these modelling approaches cannot be expected to 

produce reliably accurate probability distributions.  

This perspective logically leads to the third of the arguments considered above. The above anecdotal 

analysis, whether of mortality rates or interest rates, strongly supports the case for this argument. 

The fundamental complexity of these phenomena creates a natural and intuitive epistemic limit that 

implies it is simply not possible to make reliably accurate long-term probabilistic predictions for the 

behaviour of these types of socio-economic phenomena. It is a simple argument with a clear 

philosophical basis that has attracted support from many important thinkers over the last 200 years 

or so (we have already mentioned above a diverse group of examples such as Venn, Keynes, Hayek, 

Popper, Knight and Redington). If we accept this perspective, the key question that remains is: what 

are the implications of this conclusion for the methodology of actuarial science? What does an 

actuarial science that accepts this argument look like? This is the main topic of Chapter 6. But we are 

not quite finished with our analysis of current methodology. 

5.5 Model risk and uncertainty 
The reflective actuary, upon reading Chapter 5.4, might reasonably retort that much of what it says 

is obvious. Every actuary knows the old aphorism that models are always wrong and sometimes 

useful. Actuaries are very aware of the limitations of models and work hard to manage its 

consequences in sophisticated ways. Methods to measure the extent to which models may be wrong 

and to mitigate the consequences of these errors come under the banner of ‘model risk 

management’. A lot has been written in recent years by academics, actuaries and financial regulators 

about how to measure and manage model risk. This section reviews some contemporary thinking on 

model risk and its recommendations for good model risk management. These arguments are 

considered in the context of the empirical analysis of Chapter 5.4 and the philosophical perspectives 

that have been used to explain it.  



Post-Global Financial Crisis perspectives on model risk from the US Federal Reserve, UK HM Treasury 

and Bank of England 

Interest in the topic of model risk management was heightened by the Global Financial Crisis of 

2008. It is well known that risk models of financial institutions, especially banks, did not have a good 

crisis. Commercial and investment banks use quantitative financial models as extensively as 

insurance groups do – in pricing, underwriting, valuation, risk and capital assessment and risk 

management. Some banks’ risk models did not perform well through the Global Financial Crisis. In 

2008, the Goldman Sachs Chief Financial Officer famously commented that the firm’s internal risk 

models experienced several 25-standard deviation one-day events over the course of a couple of 

weeks. 

A lot has been written about model risk in the years since the Crisis, and we will review a handful of 

important papers. Some of these pieces have been very influential in the field of model risk in 

finance in general, and some are specifically germane to actuaries and actuarial science. We will first 

consider two important papers produced by government institutions. In an influential piece of 

supervisory guidance published in 2011344, the US Federal Reserve defined model risk as ‘the 

potential for adverse consequences from decisions based on incorrect or misused model outputs 

and reports’345. A couple of years later, HM Treasury published a review of the quality assurance that 

was applied to the models in use across the UK government and its civil service346.  Whilst both these 

papers were written for what might be regarded as predominantly non-actuarial institutions (the 

Fed paper was written for the banks that are regulated in the Federal Reserve System; the HM 

Treasury paper was written for government and civil service departments), they both provide useful 

and intelligent guidance on how to manage the model risk that arises from the use of models in 

financial institutions, including actuarial institutions such as insurance firms and pension funds.  

The Federal Reserve guidance noted that a model is necessarily a simplification of reality. This limits 

the applicability of the model. It means that a model that may be fit for one purpose may not be fit 

for another. Similarly, a model that is fit for purpose at some given point in time may not be fit for 

purpose at another time. The Treasury review similarly noted that models can provide ‘insights and 

understanding, only if they accurately reflect the policy environment and are used correctly’. 

The US and UK guidance emphasised the importance of ‘effective challenge’ and ‘critical review’, 

and a culture (British) and set of incentives (American) that supports it. Effective challenge may 

come in the form of external validation exercises and peer review. The papers recognise that model 

risk can arise from operational implementation errors such as mistakes in computer code or 

misinterpretations of data. The regulatory prescription for the management of these forms of 

operational errors is largely based on common sense: good practice should include extensive 

documentation of model development, calibration and validation; there should be effective control 

environments and checklists; annual model reviews should take place; this may include internal and 

/ or external peer review of the model; there should be clear ownership of model development; 

policies and procedures to govern and oversee these activities should be in place; model inventories 

should be produced and kept up to date; and so on.  

The US Fed guidance also implores banks to ensure the model is ‘statistically correct’. The note 

acknowledges, however, the logical limitations that must arise in establishing such correctness: 

‘appropriate statistical tests depend on specific distributional assumptions….in many cases statistical 

 
344 Board of Governors of the Federal Reserve System (2011) 
345 Board of Governors of the Federal Reserve System (2011), p. 3. 
346 HM Treasury (2013). 



tests cannot unambiguously reject false hypotheses or accept true ones based on sample 

information’347. 

Moving beyond operational errors, the US Fed guidance also recognises that there is another, more 

fundamental, source of potential error in models: ‘Because they are by definition imperfect 

representations of reality, all models have some degree of uncertainty and inaccuracy’348. The 

guidance points to intuitive ways of quantifying this uncertainty: consider the confidence intervals of 

the model’s parameter estimates and the model’s results; try to quantify the potential impact of 

factors not included in the model.  

The guidance also recognises that quantitative estimation of model uncertainty may not always be 

possible. Or, put another way, it recognises that the usual approach to quantification of uncertainty 

is reliant on assumptions that are untestable and may be intuitively unlikely in many situations. To 

understand this fundamental point in practical terms, let us re-consider the Wilkie (1995) index-

linked yield model discussed in Chapter 5.4. If it is assumed that the specified model structure is the 

true and permanent stochastic process for the future behaviour of index-linked yields and that all 

the historical data used in the calibration has also been generated by this same process, it is quite 

straightforward to estimate the parameter uncertainty associated with the model calibration. 

Indeed, Wilkie does this, showing that his parameter estimates have assuredly low standard 

errors349.  

But these estimated errors are only low because all of the most important sources of error have been 

assumed away in the estimation process! We have no reliable justification for the assumption that 

the posited model structure is the ‘true’ model. There is no testable scientific theory that has been 

used to determine that this model is the true description of the future behaviour of real interest 

rates (and Chapter 4’s discussion of the methodology of economics and econometrics highlighted 

that none is likely to be forthcoming). It is just one model choice from a choice of many, many 

possible choices that could be said to be similarly consistent with the data. The model choice can be 

viewed as the most parsimonious structure that was consistent with a small number of key premises 

such as: real interest rates cannot ever be negative; real interest rates have a constant and known 

unconditional mean; real interest rates have a constant rate of mean-reversion to this mean level. 

Wilkie’s model choice does an excellent job of being consistent with those premises and the 

available historical data. But the premises are deeply inconsistent with empirical reality. The model 

will therefore be unreliable as a probabilistic description of future real interest rates, and this will be 

the case irrespective of how small the standard errors produced by the calibration process are. 

It is important to note, again, that this is not a particular criticism of Wilkie’s technical methods. 

Wilkie’s methods were quite within the domain of orthodox statistical model-fitting techniques. In 

Huber’s often-critical review of Wilkie’s asset modelling, he argued that the small data sample 

meant that the real interest rate model ‘should be used with caution in long-term studies’. But even 

he concluded that ‘this model appears to be satisfactory’350. The fundamental point here is not that 

a different statistical fitting method could have done a better job than another – it is that all these 

methods must rely on assumptions that have no reliable basis in the context of economic 

phenomena like interest rates and inflation rates. 

 
347 Board of Governors of the Federal Reserve System (2011), p. 6. 
348 Board of Governors of the Federal Reserve System (2011), p. 8. 
349 Wilkie (1995), Table 9.1, p. 883. 
350 Huber (1996), p. 242.  



The main mitigation strategy advocated by the US Fed guidance in the presence of unquantifiable 

uncertainty is to add prudent margins to model parameters or the model output ‘in the interest of 

conservatism’351. This is clearly meant as a pragmatic supervisory solution, but its methodological 

logic is not very satisfactory. Would increasing the volatility parameter of the Wilkie index-linked 

yield model by a margin of say, 50%, have ensured a ‘conservative’ description of future real interest 

rates? No. Would using the 99th percentile as a conservative estimate of the 90th percentile have 

ensured a prudent measure of the 2018 90th percentile? No. Once the presence of this type of 

uncertainty is recognised, assessing arbitrarily ‘conservative’ probability estimates is just as 

impossible as assessing accurate estimates. In the presence of this form of unquantifiable 

uncertainty, the basic objective of generating accurate quantitative measurements of probabilities is 

a task fundamentally beyond the model.  

The US Fed guidance defines effective model validation as ‘an assessment of the reliability of a given 

model, based on its underlying assumptions, theory, and methods’, and is strongly recommended352. 

Annual validation reviews that compare actual outcomes with the model’s probability predictions 

can be used to identify when the model should be ‘redeveloped’. This is unequivocally a good idea. 

Again, referring to the Wilkie real interest rate model example, this would probably have resulted in 

the model being identified as no longer fit for purpose by 1998. But how is the model to be 

‘redeveloped’? Having been proven fallible once, what is the magic fix that will provide the model 

with reliable accuracy going forward? There isn’t one. When and how does this effective model 

validation process reach the obvious and inescapable conclusion: these types of model failures are 

not merely a result of process errors or poor modelling decisions; there are no magic modelling fixes 

that can suddenly be unearthed with the aid of one more year of data; and it is counter-productive 

to labour under the illusion that this is the case. 

We now turn to a third important post-GFC paper by supervisory authorities on model risk and 

uncertainty. The then-Chief Economist at the Bank of England, Andrew Haldane, co-authored a 

notable paper353 that argued that model uncertainty was an inevitable feature of financial risk 

modelling and that this had profound implications for the use of models in risk and capital 

assessment. Model uncertainty, it was argued, placed a ‘heavy reliance’ on professional judgement 

and experience354. So far, this is consistent with the findings developed above. However, rather than 

arguing, as has been argued above, that this inevitable model uncertainty means that positivist 

modelling is doomed to inevitable failure, the central argument of the paper was that the presence 

of inevitable model uncertainty means that, for the positivist application of generating a probability-

based capital assessment answer, much simpler models are preferable to the complex internal 

models commonly developed by banks. 

The general logic of this argument, first developed by the Nobel Prize-winning economist Herbert 

Simon in the 1950s, is that simpler methods are more robust to the lack of knowledge implied by 

model uncertainty (we can loosely think of ‘robust’ here as meaning the answer is less sensitive to 

being wrong about things that are uncertain; Simon argued that humans operating in a world of 

uncertainty use simple rules or ‘heuristics’ to survive and prosper355). 

 
351 Board of Governors of the Federal Reserve System (2011), p. 8. 
352 Board of Governors of the Federal Reserve System (2011), p. 10. 
353 Haldane and Madouros (2012) 
354 Haldane and Madouros (2012), p. 117. 
355 Simon (1956) 



Haldane’s paper also argued that illustrative simple methods (such as leverage ratios) empirically 

outperformed the complex internal models used by banks in predicting bank failure during the crisis. 

Mervyn King, the former Bank of England governor, made a very similar argument in his 2016 book, 

The End of Alchemy356. And we noted earlier that Redington had similarly argued in favour of the use 

of simple models in the presence of model uncertainty. 

Simplicity is undoubtedly a modelling virtue…but simplicity is not a comprehensive solution to the 

inevitable failings of positivist modelling in a world of immeasurable uncertainty. Once the presence 

of material model uncertainty is accepted, it is difficult to find virtue in any mechanical model-based 

probabilistic capital assessment, simple or complex. In such circumstances, there is the risk of 

systematically under-stating future probability tails as a result of assuming away sources of 

uncertainty without justification. As argued above, many different model structures may provide a 

set of historical data with excellent parameter calibration performance, under the assumption that 

the given model is correct and there is no model uncertainty. Simplifying the model structure does 

not solve these problems that arise in a positivist use of the model as an answer-generating 

machine. 

So, simplicity is not, in and of itself, the solution. Moreover, model complexity can be valuable, when 

used in the right hands. When models are used as interpretivist tools rather than positivist answer-

generators, complexity is capable of producing valuable insights (for experts that understand the 

models) that simple models simply cannot. This suggests we should be reticent to conclude that 

complex models have no role to play, especially in the context of some of the complex balance 

sheets that have been created by financial institutions (whether or not that complexity is a good 

idea is a different question, and one that is discussed in Chapter 6.1). 

There is another feasible explanation for why Haldane found that simple measures could outperform 

the complex internal models of banks in the presence of uncertainty: the complexity of the banks’ 

models was never actually intended to provide a more accurate measure of risk and capital. Rather, 

the complex models resulted (at least in part) from banks’ incentives to find ways of producing lower 

measures of risk and capital requirements, and regulators’ failure to effectively supervise how banks’ 

developed and used these internal models. 

In conclusion, complexity may well be at best pointless in a positivist form of model use. Above we 

have argued that this is not necessarily a strong argument for more modelling simplicity, but an 

argument for moving away from the positivist form of model use. As noted above, the US Fed paper 

started by defining model risk in the context of the decisions made with the use of a model. This is 

the most fundamental point, and it points to a better resolution of the above difficulties. As argued 

elsewhere above and below, the presence of unquantifiable uncertainty does not render a 

quantitative probabilistic model useless. Far from it. Instead, it changes how the model should be 

used. 

The model’s purpose should not be to mechanically generate numbers that are interpreted literally 

by laypeople who have been assured of the modelling process’s robustness and objectivity by experts’ 

rubber stamps. Rather, the use of a model in the presence of unquantifiable uncertainty should be as 

an interpretative tool for experts to use to gain new insights that are useful for their professional 

output.  
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Recent Actuarial Literature on Model Risk and Uncertainty 

In recent years, the UK actuarial profession has also produced some notable research on the topic of 

model risk and uncertainty. A Model Risk Working Party published two papers on the topic in the 

late 2010s357. These papers explicitly considered the idea of model uncertainty discussed in the US 

Federal Reserve and Haldane papers. The Introduction to the first of these actuarial papers notes:  

“The randomness of variables such as asset returns and claim severities makes estimates of their 

statistical behaviour uncertain: in other words, we can never be confident that the right distribution 

or parameters have been chosen.”358  

The paper explicitly recognises the unquantifiable nature of model uncertainty. Or, in the paper’s 

terminology, how the assessment of model uncertainty also inevitably involves measurement 

uncertainty: 

“A quantitative analysis of model uncertainty, e.g. via arguments based on statistical theory, will 

itself be subject to model error, albeit of a different kind.”359 

Like the US Federal Reserve and HM Treasury papers, these two UK actuarial papers advocate a 

model governance framework that includes clear model ownership, senior organisational oversight 

and a policy that sets out minimum standards for model quality assurance that includes validation 

and appropriate documentation. There are also some additional suggestions. For example, the 2016 

paper suggests that the Board of a financial institution that uses models should define its ‘model risk 

appetite’, which the paper defines as the ‘extent of its [the Board’s] willingness, or otherwise, to 

accept results from complex models’360. 

The phrase ‘to accept results’ suggests the Working Party envisages models being used in the 

specifically positivistic sense of generating answers for lay authorities (in this case the Board of the 

financial institution), rather than as tools to provide the institution’s experts with insights that they 

can use in forming their advice to the lay authority. It also implicitly seems to suggest that model risk 

is only present in complex models. As was argued above, model uncertainty is not mitigated by 

simplicity: a very simple model of the expected future real interest rate will have unavoidable and 

material model uncertainty. 

The 2016 paper suggests that model documentation should include ‘a reasonable range or 

confidence interval around the model result (e.g. by using sensitivities to key expert judgements)’361. 

As noted above, the paper had already pointed out that estimates of model uncertainty would be 

inherently subject to error, and so the reference to expert judgement is quite natural. The paper 

expands on this point more explicitly later:  

“An overlay of expert judgment should be applied to the model output to address the uncertainty in 

the model. For example, if there is significant uncertainty in one of the underlying assumptions and 

hence there is a range of plausible results, then an expert judgement may be applied to identify a 

more appropriate result within the range of reasonable outcomes. Alternatively, the expert 
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judgement may be an entirely independent and objective scenario assessment to complement the 

modelled result, or replace the use of the model altogether.”362 

There is much sense in this advice. For example, independently produced and specific ‘stress 

scenarios’ (for example, the effect on longevity improvements of a major breakthrough in a form of 

cancer treatment) can help to externally validate whether the probability tails produced by a 

mortality projection model are of a sensible order of magnitude. But it should be borne in mind that 

once the inherent uncertainty in the future behaviour of a phenomena is recognised, this 

uncertainty is attached to the development and interpretation of specific stress test scenarios for 

the phenomena as well as to its estimated probability distributions. And the identification of such 

stress test projections may be subject to similar biases and errors in the underappreciation of the 

extent to which socio-economic systems can diverge from the norms of recent past. For example, an 

expert economist, when asked in 1995 to produce some independent stress test scenarios for the 

long-term real interest rate in 2020 would have been unlikely to have identified many plausible 

circumstances in which a rate of -2% could arise. 

Although the paper acknowledges that model uncertainty is inherently difficult to quantify, it 

nonetheless suggests that approaches such as those suggested above should be used to determine if 

the firm’s use of models exceeds the Board’s specified model risk appetite. The paper argues that it 

is up to the Board to decide whether it is willing to accept the use of a model that comes with a 

given estimated level of model uncertainty. The paper implies this should be a binary decision: either 

the model has too much uncertainty and the Board should reject its use; or the model has an 

acceptable amount of model uncertainty and should therefore use its results.  

To re-iterate the point made earlier, the perspective developed in this work is that it is possible for a 

model with a large amount of model uncertainty to be put to good actuarial use. Not, however, for 

the purpose of mechanically generating results for the Board (even if accompanied with the 

assurance of experts that the model has acceptably low model uncertainty), but to provide 

understanding and insight to the firm’s actuaries and other technical experts (who can derive useful 

insight from interpreting the model’s outputs in the presence of uncertainty, and then use this 

insight to provide professional advice to the Board that has been enhanced by this interpretative 

expert use of the model). 

In one particular sense (but not in others, as will be discussed in Chapter 5.6 below), this argument 

suggests a shift back in time to how actuaries, and perhaps other financial risk professionals, used 

models prior to the advent of regulatory principle-based capital assessment and the permitted use 

of internal models (which began in banks in 1996 with the Market Risk Amendment to Basel I; was 

then extended to include the assessment of credit risk in Basel II in 2004; was introduced into UK 

insurance to some degree by the Individual Capital Assessment system in 2003; and plays an 

important role in Solvency II, which was introduced to EU insurance supervision in 2016. Actuaries’ 

mechanical use of model output to assess risk-based capital requirements can be traced a bit further 

back to the pioneering work of Sidney Benjamin and the Maturity Guarantees Working Party that 

followed).  

These regulatory approaches provide firms with the opportunity to develop their own models for 

risk-sensitive probability-based capital assessment. One of the fundamental ideas that underlie the 

contemporary approach to internal model-assessed capital requirements is that sophisticated 
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scientific models can be developed and validated by experts such that relative laypeople can be 

assured that the model will then reliably produce the right answer. The process requires that the 

firm’s Board and the regulatory authorities are, after a rigorous model validation process, convinced 

that the experts have done their work adequately in creating the answer-generating model, and the 

model is then put to work to determine the required amount of capital. 

The interpretivist perspective implies a different sequencing. Instead of experts building models that 

generate answers for Boards and regulators, experts can use models to help them provide answers 

to Boards and regulators. This may sound like a nuance, and this distinction may not be quite so 

black and white in real life. But it has some fundamental implications for the way some actuarial 

models are used today. It removes the unrealistic idea of Boards of modelling laypeople taking 

responsibility for complex model outputs and their use. It empowers the expert to use their 

expertise to solve problems rather than to merely build models. But the obvious shortcoming of 

such a system is it places reliance on the individual expert’s subjective judgment. If the expertise 

cannot be distilled into a scientific model, how can the expertise be trusted and demonstrated to be 

‘correct’? 

Transparency is the most obvious answer. One natural solution would be to require the experts’ 

capital assessment and the expert’s reasoning to be made publicly available to other experts. This is 

reminiscent of the ‘freedom with publicity’ system of many years ago. In this setting, the expert 

actuary can essentially use whatever methods and reasoning he or she sees fit to assess the capital 

requirement, providing those methods are disclosed in sufficient detail for other experts to review 

and opine on the reasonableness or otherwise of their methods. This is likely to result in better 

reasoning and methods than the current process of internal model governance where a hard-

stretched regulator is given the task of privately reviewing each insurance firm’s complex model in 

order to be convinced that the model can meet their objective of answering unanswerable 

questions. As noted above, Haldane’s empirical analysis suggests this approach may be resulting in 

internal capital models with serious inadequacies. Would the same failings be as likely if the models, 

calibration and assumptions were fully exposed to the harsh sunlight of public disclosure and peer 

group scrutiny?  

5.6  Economic theory and actuarial science 
The application of economic theory in the context of actuarial science has been a topic that has 

generated considerable debate within the actuarial profession over the last 30 or 40 years. In 

Pemberton’s 1999 methodology paper and its discussion, both Pemberton and Cartwright were 

strongly sceptical of the usefulness of economic theory to actuarial science. To quote Cartwright: 

“We should be wary of principles and methods imported from theoretical economics which are, 

themselves, often borrowed from modelling strategies used in physics, where phenomena tend to 

be regular and repeatable, and predictions are, for the most part, confined to the well-controlled 

circumstances of a laboratory.”363 

The abstract nature of economics, and its empirical failings as a positive science as discussed in 

Chapter 4, mean that actuaries should indeed be highly sceptical of, say, the quantitative predictions 

of econometric models for actuarially relevant economic variables such as inflation or salary growth. 

But does this mean that actuaries should have no use for economic theory? The perspectives 

developed in this work suggest the more interesting question is: can actuaries make use of economic 

theory in an interpretivist rather than positive sense? Chapter 4 concluded that it is the case 
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generally that economic theory has real value as an interpretivist field of study. It will be similarly 

argued here that it is also the case that the interpretivist application of economic theory can provide 

profound insights in many areas within actuaries’ professional domain. 

The value of economic theory to contemporary actuarial science is potentially very substantial 

because, for one reason or another, many actuarial financial institutions have opted to substantially 

increase the amount of financial market risk on their balance sheets over the last fifty years or so 

(Chapter 6 will discuss whether this risk-taking is desirable, but the current discussion merely 

requires us to recognise it is present).  

There are a handful of key ideas in financial economic theory that can provide useful insight into the 

costs of bearing those risks and they can be managed364. Several of these ideas give insight into 

what, in well-functioning markets, should not matter. For example, diversifiable risk should not be 

rewarded; the risk premia of underlying assets should not affect the price of options on those assets; 

the capital structure of a firm should not affect its total value; investors should not be expected to 

be able to outperform the market on a risk-adjusted basis after costs. And there are also ideas that 

are important formalisations of intuitive knowledge: for example, options can be thought of as 

continuously rebalanced dynamic portfolios of the option’s underlying asset and the risk-free asset.  

All of these insights result from theoretical deductions from unrealistic premises. They are the result 

of severe abstractions and the results should not be interpreted over-literally. But the logic of their 

derivation is sophisticated and can be highly enlightening. A deep understanding of these ideas can 

help to cultivate an economic logic that can deliver empirical insights for financial risk management 

and decision-making. Option pricing theory is probably the most important of these ideas to 

actuaries and can provide the best examples of how economic theory can be of practical use to the 

actuary. Conceptually, forms of financial options pop up all over actuarial science: in asset pricing (all 

debt can be thought of as having an option-based pay-off); in life assurance liability valuation 

(various forms of policy guarantee can be expressed as options); in the risk management of those 

liabilities (based on the insight that they have embedded options); in Defined Benefit pension fund 

sponsor default risk; and so on. The economic logic of dynamic replication can provide profound 

insight into the fundamental nature of a financial risk - its scale and sensitivities and the cost of 

transferring it to a third-party. 

As an example for illustration, let’s consider the somewhat infamous topic of the management of 

Guaranteed Annuity Options (GAOs) in the UK in the 1990s and the potential application of option 

pricing theory to this problem365. The GAO crisis was a complex problem, especially in the context of 

with-profit business, where legal interpretations of policyholders’ reasonable expectations had a 

significant impact on who should and would bear the costs of the GAO liabilities. It is therefore not 

being suggested here that the derivative pricing theories of financial economics would have 

necessarily been a panacea for the multi-faceted GAO crisis (that had been built over several 

decades). 

Nonetheless, there is a strong argument that UK life actuaries in the early-1990s could have found 

much insight into their emerging GAO issues from the then well-established financial economic 

theory of option pricing366. In particular, actuaries could have familiarised themselves with ideas 
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such as: the theoretical concept of an arbitrage-free price for the GAO and how an indicative value 

of that price could be estimated; how that price differed from the actuarial reserves then held for 

the GAO; the sensitivity of that price to future interest rate movements; how the arbitrage-free price 

implied a replicating portfolio for the GAO pay-off and how the composition of that replicating 

portfolio radically differed from the way in which GAO reserves were invested. These concepts could 

have provided actuaries with real insight into the nature, potential scale and route to risk 

management of GAOs. Using option pricing theory in this way does not mean subscribing to the 

belief that the number produced by the derivative formula is ‘correct’, or that the theory’s 

assumptions are true. It is simply another tool that can significantly illuminate and provide a deeper, 

richer understanding of the financial problem at hand. 

The actuarial use of the models of financial economics as interpretivist tools is not a new idea. In his 

doctoral thesis on the use of economic models in actuarial science, Huber wrote367: 

“Although these theoretical models [based on financial economic theory] are clearly unrealistic, they 

have important pedagogic value. They provide decision makers with information about an 

understandable idealised environment. This establishes a basis from which they can make their own 

subjective adjustments if they wish. This illustrates the importance of being able to interpret 

actuarial economic models…These models do not produce final answers for applications; they merely 

assist actuaries in understanding the relevant issues.” [my italics] 

The above quotation is fully consistent with the perspective developed over Chapters 4 and 5 of this 

work. However, an important caveat is required to the argument that an interpretative use of 

economic theory can be a powerful asset to actuaries. The important practical insights offered by 

option pricing theory require a relatively deep understanding of the theory, its assumptions and 

nuances. A superficial, or flawed, understanding of the theory may lead to misinterpretations that 

make the application of the theory counter-productive. This raises interesting and important 

questions around professional training and the development of the requisite technical expertise, 

especially given that the development of the theory will tend to be external to the profession.  

The ability to derive practical insight within a given professional domain from some external and 

abstract scientific theory is an important, if intangible, element of professional skill that is 

particularly important to the actuarial profession given how much of its technical knowledge is 

developed outside of the profession. But the actuarial profession is far from unique in this regard, 

and a similar requirement arises in many professional contexts. Consider, for example, how a 

General may make use of game theory in military strategy and planning; or how an oncologist may 

make use of radiation therapy in cancer treatments. Ultimately, professional success in these 

scenarios relies on constructive collaboration between the professional and the theorist. This is 

sometimes easier said than done, not only because of the inevitable communication challenges 

between different types of experts, but because it can give rise to a contest over the boundaries of 

professional domains. This has arguably been a feature of the way actuaries have engaged with 

economists in recent decades.  

A deep and thorough understanding of economic theory can offer a great deal of conceptual insight 

into many vital topics in actuarial science. Actuaries must still use their professional expertise to 

make interpretative use of that insight, recognising that the theory is an abstraction, and applying 

their understanding of the empirical complexities that arise within their professional domain. This 
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brings us to the next topic in our philosophical discussion of contemporary actuarial methodology: 

how professional judgement and skill is and should be treated within actuarial science. 

5.7 Professional judgement and modelling skill 
In opening the discussion of Pemberton’s 1999 actuarial methodology paper, Cartwright closed with 

the observation that ‘[philosophy of science] has virtually no accounts available of how to justify 

concrete causal claims where they do not follow from abstract theory’368. 

Chapter 4.2 noted the significant philosophical problems that can arise in the social sciences when 

attempting to justify concrete claims even where well-developed abstract theory does exist. So, it is 

perhaps no surprise that philosophy has even greater epistemic difficulties with causal claims in the 

absence of such theory. As per the empirical and applied characterisation of actuarial science 

developed in Chapter 5.2, we may reasonably reject the very idea that attempts to justify causal 

claims are a central focus of actuarial science. Nonetheless, Cartwright is highlighting an important 

point for actuarial science: there is a significant epistemic challenge around how to justify, evaluate 

or validate elements of actuarial science that she herself has identified as part of its defining 

characteristics - in particular, the characterisation of actuarial science as skills-based.  

Of course, actuarial science is not the only discipline where professional skill or expert judgement is 

an important and characterising feature of method. Medicine and other types of learned profession 

may provide other examples. And the extent to which expert judgment features in any professional 

task may vary by degree. The importance of expert judgement and its role in elevating a task into the 

domain of a profession is ultimately a function of its cost of failure. A car mechanic can happily 

‘guess’ at the car fault and keep trying until he or she gets it right; a General fighting a war or a 

neurosurgeon operating on a patient may not get more than one chance to get it right. In such cases, 

the expert judgment required to reliably make the correct assessment and decision is clearly 

valuable. 

Useful parallels with the role that skill and judgement play in actuarial science may potentially be 

found in other fields where the use of probabilities play an explicit role in the analytical processes of 

the discipline. A body of academic research has developed in recent decades which considers how 

expert judgment may be used in the formation of probability-based risk analysis. The World Bank 

published a useful review369 of this literature in 2004, which reported:  

“Because of the complex, subjective nature of expert opinion, there has been no formally 

established methodology for treating expert judgement.”370 

In the absence of such a methodology for handling expert judgment, a popular strategy has been to 

attempt to aggregate or find consensus amongst many, independently minded experts. This is an 

intuitive and practical approach to managing the expert judgment problem: perhaps confidence in 

the use of expert judgement can only be obtained from the judgments of other, independent, 

experts. (And it may be noted that this outlook is consistent with Chapter 5.5’s suggestion that the 

best way to regulate the use of expert opinion in insurance firms’ internal capital models is to 

publish them, thus making these judgements transparent and available for scrutiny by other 

experts.)  
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The World Bank review noted that a range of mathematical techniques have been developed to 

distil several experts’ views on future probabilistic scenarios into a single probability or probability 

distribution. Beyond these mathematical algorithms, and indeed chronologically before them, 

‘behavioural’ methods such as the Delphi technique were developed. These seek to find a consensus 

through iterations of anonymous circulation of views amongst a group of experts371. The essence of 

all of these techniques is that it is difficult for a lay person to second-guess an expert, and so it is left 

to other experts to effectively regulate the opinions and judgements of experts. 

The assurances produced by such approaches may not offer a panacea, however. Most obviously, 

these types of peer group-driven approaches are susceptible to ‘group think’. Returning yet again to 

our 1990s real interest rate forecasting example, it would likely have been quite hard to find many 

expert opinions that attached a meaningful probability to the actual 2020 outcome for the Sterling 

long-term real interest rate. The success of these approaches relies on accessing a range of 

independent expert opinions that span the full spectrum of reasoned expert views, whilst managing 

to exclude the use of views that are clear ‘quackery’. The decision about what does and does not 

constitute ‘admissible’ expert judgement is itself an expert judgement. From an epistemic 

perspective, we find ourselves in an infinite regress familiar in the analysis of inductive reasoning372.  

As noted above, actuaries are not unique in their need to use skill and expert judgment in their 

professional work. When a physician decides upon a course of treatment, they may undertake a 

range of test procedures and then consult published charts, formulas and guidelines to translate 

those results into a ‘standard’ course of treatment. But the doctor will often use their expert 

judgement and professional skill to tailor their treatment strategy to reflect the unique 

circumstances of their specific patient. Indeed, the application of this skill and judgment to unique 

cases is arguably the essence of what a profession does. For the doctor or surgeon who treats scores 

of patients, it may be possible in at least some cases for their professional performance to be 

assessed and monitored. This is arguably harder in the professional domain of actuaries where the 

success or otherwise of the professional service may take decades to emerge and is subject to many 

other influences. 

The asymmetry of expertise between the professional and their client inevitably creates a need for 

the client to place some form of faith or trust in their professional advisor, which in turn creates a 

requirement for the professional to respect that trust by adopting a fiduciary responsibility to act in 

the client’s interests. Professional standards and legal requirements are likely to determine what 

range of actions may be considered within the boundaries of reasonable profession judgement. But 

the meeting of such minimum standards does not remove the rationale for the more systematic 

peer group scrutiny that can be generated by the transparency provided through public disclosure of 

professional decisions and methods. 

Professional skills, complexity, technology and professional jurisdictions  

In Susskind & Susskind’s influential 2015 book, The Future of the Professions, they recognised that 

expert judgement was a significant feature of the work of any profession. They referred to this 

professional skill as ‘practical expertise’, which they defined as ‘the complex combination of formal 

knowledge, know-how, expertise, experience and skills’373.  One of the central arguments of Susskind 

& Susskind is that an internet-driven world will increasingly find ways of centralising and 

commoditising this practical expertise. Practical expertise, Susskind & Susskind argued, ‘traditionally 
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has been held in people’s (professionals’) heads, textbooks and filing cabinets. Increasingly, this 

expertise is being stored and represented, in digital form, in a variety of machines, systems, and 

tools.’374 

Their book also accepts, however, that this process has a limit: some portion of practical expertise is 

‘tacit’ and not amenable to extraction and digitisation. Such expertise can be informal and heuristic, 

meaning that there is inherent difficultly in ‘mining the jewels from professional’s heads’. 

Nonetheless, Susskind & Susskind write of a ‘post-professional world’ where the internet-driven 

world can de-compose, standardise, automate and digitise practical expertise. They argue that 

automation and Artificial Intelligence (AI) systems can improve the quality of large swathes of 

professional work. For example, they note a study where algorithmic medical diagnostic systems 

materially reduced the frequency of false negative diagnoses for breast cancer375.  

Their argument implies that much of professional judgement can ultimately be made redundant. 

They emphasise, however, that theirs is a multi-decade perspective. Their forecast may or may not 

ultimately prove accurate. The pace and extent to which professional activities can move entirely 

from the bespoke crafting of case-specific solutions to fully-routinised algorithms is difficult to 

predict. But in the meantime, we still have the challenge of how to approach the evaluation of 

professional skill. 

This perspective of Susskind & Susskind is broadly consistent with the (earlier) arguments of Andrew 

Abbott, the leading sociologist of the professions who is mentioned in the Introduction above376. 

Abbott argued that the complexity of the inferences made by a given profession has a significant 

impact on the vulnerability of that profession’s jurisdiction. Tasks requiring only simple inference will 

be subject to routinisation and de-professionalisation. The internet-driven world that is the focus of 

Susskind & Susskind may accelerate this commoditisation of expert skill. Abbott also argued that 

complexity was not necessarily the best form of defence against this routinisation of professional 

tasks. Professions whose inferences are always complex and obscure may have their own difficulties. 

Too much reliance on expert judgement to tackle a series of seemingly idiosyncratic tasks might 

suggest that the profession’s ‘abstract knowledge system’ (i.e. what we refer to as actuarial science 

in the context of the actuarial profession) is lacking in scientific legitimacy. 

Historically, it has not been unusual for technological developments and the near-inevitable increase 

in complexity that accompanies them to result in new professions entering the jurisdictions of 

traditional, established professions (either by usurping them, working alongside them, or acting in 

subordinate roles to them). For example, in the 19th century, there was virtually no structural 

engineering profession. Architects did their own engineering. Over the 20th century, the increasing 

complexity of the technology of building construction led to the emergence of the specialist 

profession of structural engineers. Today, the architect typically provides the lead direction and 

retains the overall professional responsibility for a major building project, but essentially delegates 

some complex professional building tasks to the structural engineers377. Clearly, (unpredictable) 

technology developments can shape the evolution of professions (their size and their activities) in a 

variety of ways. 

Irrespective of how technology impacts on the complexity and commoditisation of the professional 

tasks of the actuary over the long-term, it seems inevitable that expert judgment and modelling skill 
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will play a meaningful role in actuarial science over the foreseeable future. The philosophical 

difficulty identified by Cartwright at the start of this section probably does not admit of any perfect 

solution. But actuaries must perform in an imperfect world. The key to the necessary oversight of 

actuarial expert judgment is transparency and disclosure. This applies to both the communication of 

the methods of actuarial science to others outside the profession who have expertise in the 

techniques employed therein; and to the specific expert judgments that actuaries make in the 

course of their work, which should be made available to other actuaries and other relevant experts 

through appropriate disclosures wherever possible. 

  



6 Implications for an improved actuarial methodology 
Chapter 5 developed an analysis of some features of the contemporary methodology of actuarial 

science. The discussion identified some of the key characteristics of actuarial science, as determined 

by the nature of the questions it sought to answer and the nature of the socio-economic phenomena 

that it analysed in doing so. One of the central points to emerge from this analysis was that there is a 

substantial epistemic limit to what can be predicted (deterministically or stochastically) for the 

future behaviour of most of the phenomena of actuarial interest. When modelling these 

phenomena, this inevitably leads to what is commonly known as model uncertainty. The level of 

uncertainty that applies to the long-term nature of many phenomena of actuarial interest means 

that much of actuarial modelling is conducted under conditions of deep model uncertainty. 

The presence of deep model uncertainty does not imply actuarial models are useless or that 

actuaries have made significant errors in their model-building. Rather, it was argued in Chapter 5 

that this unavoidable deep model uncertainty has fundamental implications for how models are used 

and what questions are capable of being reliably answered. In the presence of deep model 

uncertainty, actuarial models are best suited as insight-generating tools for the use of actuarial 

experts who understand them, rather than as answer-generating machines that are built by actuarial 

experts to generate answers for lay clients. Put another, in the language of the philosophy of social 

science as discussed in Chapters 3 and 4, in the presence of deep model uncertainty, actuarial 

models are best employed as part of an interpretivist rather than positivist methodology. 

This chapter considers some of the implications of this perspective for the methodology of actuarial 

science. We will consider some specific topics in contemporary actuarial science and discuss how the 

above perspective implies some alternative approaches to those commonly used by actuaries today. 

These topics are chiefly concerned with some form of measurement: of risk, or capital or some form 

of funding requirement. Before considering these topics in more detail in Chapter 6.2, Chapter 6.1 

first considers another question where the above perspective on the presence of deep model 

uncertainty may have important implications: what forms of risk naturally reside on the balance 

sheets of actuarial financial institutions and what form of risks are best accumulated elsewhere (by 

individuals or more directly in the capital markets, for example). Finally, as part of this theme of 

looking to the future and considering how the methodology of actuarial science can develop, 

Chapter 6.3 discusses how the emerging technological capabilities of big data and data science can 

be considered within the methodological framework developed here. 

6.1 Risk appetite in actuarial financial institutions 
A discussion of risk management might naturally begin with some sort of specification of the range 

of risks that are to be retained and thus must be managed. This is often referred to as specifying the 

risk appetite of the individual or institution in question. Risk appetite is usually expressed 

quantitatively. That is, how much of a given type of risk is an institution or individual willing to bear. 

But here we will begin with the more basic, binary question: which risks should an actuarial financial 

institution be willing to bear; and, equally importantly, which risks naturally best belong somewhere 

else. 

These questions might be considered beyond the domain of actuarial science. It might be argued 

that it is the actuary’s role to advise their client on how to measure and manage whatever forms of 

risk the client wishes to be exposed to. Irrespective of where we might choose to define the 

boundaries of actuarial science, here we will consider what the above methodological analysis says 

about the types of risk that a financial institution such as an insurance firm or defined benefit 

pension fund ought to seek to be exposed to, and which types of risks they ought to avoid. For 



brevity, in this discussion we will refer to these types of institutions as actuarial financial institutions; 

and we will use the term ‘balance sheet’ in the broadest sense to refer to the assets and liabilities of 

the institution, irrespective of the particular legal structures that pertain. 

We begin with a general assertion that carries significant implications for risk appetite: risks that are 

subject to deep uncertainty are not risks that can be efficiently managed or sustainably accumulated 

by actuarial financial institutions such as insurance firms or pension funds. Actuarial financial 

institutions should focus on facilitating the pooling of diversifiable risks and should be strongly averse 

to the accumulation of non-diversifiable uncertainties. 

This might seem a bold statement, particularly in the context of Chapter 5, which concluded that 

much of what actuaries measure and manage (such as longevity risk and economic and financial 

market risk) is subject to deep uncertainty. The logic of this assertion will be developed using 

examples developed throughout Chapter 6.1. But such an assertion gives rise to a couple of 

immediate obvious questions…if actuarial institutions avoid those uncertainties, what is left for them 

to do? And haven’t actuarial financial institutions such as insurance companies borne these 

uncertainties very successfully for hundreds of years, generating an enviable long-term track record 

in consistently delivering on their promises in the process? 

A Historical Perspective on the Long-term Resilience of Insurance Firms 

History suggests a more nuanced reality than that expressed by the above claim. Consider life 

assurance in the UK, for example. It is certainly true that UK life offices have accrued an enviable 

long-term record of making good on policyholder promises. How has it done so? For two centuries of 

the roughly two-and-a-half centuries of actuarial history, the mutual life office has been the 

dominant form of actuarial financial institution in UK life assurance. The financial structure of the 

British mutual life office, as developed and implemented at the end of the eighteenth century by 

pioneers such as Richard Price and William Morgan378, was carefully and deliberately designed to 

eschew exposure to long-term uncertainties on its balance sheet. This is what made the mutual life 

office a resilient, sustainable and successful financial structure for two hundred years. 

Specifically, the with-profit policy, as configured then, facilitated the pooling of individual mortality 

risk, whilst passing back the bulk of the exposures to the long-term uncertainties in interest rates, 

investment returns and longevity trends back to the with-profit policyholders. Non-profit 

policyholders did manage to pass all of these risks to the institution (which was wholly owned by the 

with-profit policyholders), but the offices were careful to ensure that the bulk of policyholder 

liabilities were of the with-profit form, thus ensuring that the exposures arising from the non-profit 

book could be comfortably absorbed by the risk-taking nature of the with-profit policies379. 

Moreover, for the first 200 years of the history of the mutual British life office, the assets backing 

non-profit liabilities were invested in very low risk assets (mainly government bonds). Allocations to 

risky asset classes such as equities were limited to excess assets that were not required to match 

liability guarantees (arising from either with-profit or non-profit liabilities).  

This structure worked very well for almost two hundred years. It was only in the second half of the 

twentieth century that the British mutual life offices started to develop major exposures to interest 

 
378 See, for example, Turnbull (2017), Chapter 2; and Ogborn (1962), Chapters VII, VIII and IX for further 
discussion of the historical development of the mutual British life office. 
379 In his essay on the consequences of uncertainty for actuarial practice, Prescience and Nescience, Frank 
Redington seems to go a step further and argues that our inability to forecast interest rates and mortality rates 
meant that long-term non-profit policies were ‘unreasonable’ and asked ‘should we not abandon them except 
in very special circumstances’. (p. 533). 



rate risk ( in the form of guaranteed annuity option liabilities, for example) and to financial market 

risk (by investing in equities and real estate beyond the level that permitted guarantees to be fully 

matched by low risk bonds). Whilst the flexibility in the pay-outs to with-profit policyholders could 

absorb some of the impact of these risk exposures, some of the impact was inevitably left on the 

balance sheets of the mutual life offices. And the eventual law courts’ judgement on what 

constituted the reasonable expectations of with-profit policyholders clarified that the flexibility 

available in with-profit pay-outs was less than actuaries and the management of mutual life offices 

had previously understood380. 

So, the historical long-term resilience of the mutual British life office was, at least in large part, due 

to limiting the exposure to long-term uncertainties such that they could be structurally absorbed by 

its with-profit policyholders via the explicit participation of their policy pay-out in these risks. 

Meanwhile, this structure successfully transferred and pooled the diversifiable element of all 

policyholders’ mortality risk (with-profit and non-profit).  

What of today’s life assurance firms? Well, by contrast to the first 200 years of the history of British 

life offices, most of today’s firms bear a lot of exposure to long-term uncertainties. This comes most 

obviously in the form of their investment strategies, where the assets backing fixed non-profit 

liabilities tend to be invested in risky asset strategies (and the current trend appears to be towards 

assets with more risk, more complexity and less liquidity). Today’s insurance firms also bear 

significant amounts of long-term uncertainty in the form of exposure to long-term longevity trends 

(which mainly arise in the form of (non-profit) fixed annuity policies). 

Below we further discuss the rationale (or lack of it) for insurance firms bearing these two forms of 

uncertainty. 

Insurance Firms and Longevity Protection  

Many life assurance firms strategically seek exposure to long-term longevity uncertainty. This 

exposure has historically been obtained in the form of non-profit life annuities. Since the removal of 

compulsory pension annuitisation in the UK in 2015, the demand for such policies has fallen 

substantially. Today, another significant source of long-term longevity exposure for life assurers 

arises from Defined Benefit (DB) pension funds who are seeking to transfer their exposure to this 

form of risk to an insurance firm (DB pension fund topics are discussed further below).  

Individuals with Defined Contribution (DC) pension funds are currently choosing to bear significantly 

more individual longevity risk in their retirement than has been the case in recent past generations. 

It seems counter-intuitive for individuals to bear a risk that is highly material to them and that, at 

least in large part, can be easily pooled and diversified. Why is the conventional solution of an 

annuity contract not working here (in the sense that it is not attracting significant demand from DC 

pensioners)? The reasons for this may be numerous and complex and some of them may go beyond 

only actuarial considerations. In the context of the above discussion, however, it is natural to ask: is 

the deep uncertainty associated with long-term longevity trends a relevant factor?  

When considering the longevity outcome for an individual, it can be de-composed into two parts: 

• There is the overall longevity experience of the population (or relevant homogenous sub-

group of the population that the individual can be placed in). As was anecdotally 

demonstrated and discussed in Chapter 5, the long-term prediction of this experience is 

subject to deep uncertainty. When an individual retires at, say, age 65, it may well turn out 

 
380 See, for example, Turnbull (2017), Chapter 5; and Boyle and Hardy (2003) for further discussion.  



that the actuarial life expectancy for the (relevant sub-group of the) population at that point 

in time turns out to have been wrong by a few years. We do not have a reliably accurate way 

of measuring just how wrong these estimates could be, but even with a sceptical outlook on 

positivist social science methods, we can have some confidence that this estimate will not be 

wrong by, say, 20 or 30 years for the population of 65 year olds.  

 

• Then there is the longevity outcome of the individual relative to the average experience. This 

part of the individual longevity outcome could easily differ from the average life expectancy 

by 20 or 30 years. This part of longevity risk is statistically independent of the experience of 

the relevant homogenous population group. The outcome of accumulating this form of risk 

is therefore not subject to deep uncertainty. It is a diversifiable risk. 

The argument above implies that life assurers should not write policies that accumulate the first 

component of individuals’ longevity risk, as it is subject to deep uncertainty. If the insurer does 

accumulate exposure to this uncertainty, they will have to hold significant capital to support this 

exposure. The holding of this extra capital is costly and the associated cost will naturally have to be 

passed onto the policyholder in the form of an increase in the policy premium. The bearing of this 

risk will also require some educated guesswork in the setting the longevity assumptions in the policy 

pricing, and the insurer may err on the side of caution when setting these assumptions.  

From the individual’s perspective, it makes little sense to pay for the costs associated with passing 

the long-term uncertainty of average longevity trends to the life assurer: for the individual, the vast 

bulk of their risk can be represented by how their longevity experience differs relative to the 

average. This can be cheaply diversified by an insurer. It is the other part, the average trend risk 

element, that incurs the greater costs. 

This analysis suggests that the traditional non-profit annuity is not a particularly good longevity risk 

solution for retirees. By transferring both the idiosyncratic and long-term average trend components 

of their longevity risk to the life assurer, the annuity provides a longevity protection solution that is 

more expensive than is required to meet the key individual need. A sustainable and cost-efficient 

long-term longevity solution would be one that delivers a form of risk transfer in which the 

insurance firm provides the policyholder with protection from idiosyncratic mortality risk (the 

diversifiable bit; that is, the risk that a newly-retired individual lives to 105 when the average 

experience is to live to 88), whilst returning to the policyholder the long-term longevity trend risk 

(the non-diversifiable, uncertain bit; that is, the risk that the relevant population lives to an average 

age of 91 when it was expected at the time of inception of the risk transfer that the average 

outcome would be living to 88).    

There are many forms of insurance product design that could potentially achieve these two 

objectives of facilitating the pooling of the diversifiable part of longevity risk, whilst returning the 

non-diversifiable part to the policyholder. Such solutions would remove the bulk of the 

policyholder’s longevity risk without requiring the insurance firm to bear the long-term uncertainties 

that inevitably entail very subjective pricing and holding substantial and costly capital to support 

these risks. 



Insurance Firms and Investment Risk 

Why do insurance firms often have a significant financial market risk appetite for the assets backing 

their insurance policyholder liabilities381? The answer seems very straightforward: because that risk 

is well-rewarded, and those investment rewards are often a major part of insurance firms’ revenues 

and profits. But according to basic economic logic, no obvious shareholder interest is served by 

investing these portfolios in risky assets rather than risk-free assets – in finance theory, shareholder 

wealth is not enhanced by switching balance sheet assets from government bonds to corporate 

bond, equities or anything else. Economic theory would suggest that, in the absence of complicating 

factors such as tax, insurance investment strategy choice is irrelevant to insurance company 

shareholder value382. The basic conceptual point is that the insurance firm’s shareholders are quite 

capable of investing in these risky assets directly without incurring the extra costs of doing so via an 

insurance company. There is therefore no economic rationale for the insurance firm to have a 

significant financial market risk appetite when investing such assets. 

This simple argument runs quite contrary to prevailing orthodoxy. It begs the question: if the 

purpose of insurance firms is not related to taking investment risk on behalf of shareholders, what 

then is their purpose? As argued in the discussion of longevity risk above, insurers efficiently 

facilitate the pooling and diversification of policyholders’ diversifiable risks. This risk-pooling is a very 

useful economic activity. It is also a relatively straightforward function that we would expect to be 

associated with low risk to insurance shareholders and low profit margins. Of course, most insurance 

firms today are more than ‘just’ insurance firms. They provide a broader array of financial services to 

their customers than the pooling of diversifiable risk. But that does not alter the economic logic that 

argues that no obvious shareholder interest is served by taking financial market risk with the assets 

backing insurance liabilities. Of course, beyond this basic and general economic argument, there are 

some potentially important complicating factors that arise in the context of an insurance firm. These 

factors ought to be considered carefully in this discussion: they include liquidity, regulation and 

leverage383. Let’s briefly consider the possible effects of each of these on insurance asset strategy.  

When a policyholder purchases an insurance policy they are, sometimes, buying something that is 

very illiquid, in the sense that the policy does not have a readily realisable cash value. This is not 

always the case – many forms of insurance policy provide the policyholder with the option to 

surrender or sell their policy back to the insurance firm prior to its maturity. But there are some 

forms of insurance policy – life annuities being the obvious example – where the policyholder has no 

such surrender option. In this case, the policyholder has purchased a highly illiquid asset. If we 

accept the premise that illiquid assets are valued at less than otherwise-equivalent liquid assets, this 

has two immediate implications: insurers should take advantage of this illiquidity on the liability side 

of their balance sheet by investing in illiquid rather than liquid assets384; and policyholders should 

 
381 Here, we are referring to policyholder liabilities whose cashflows are not linked to the investment 
performance of the assets. 
382 This is not a new idea, either in corporate finance theory or in the specific context of insurance investment. 
For an example of discussion of the insurance investment irrelevance proposition in the actuarial literature see 
Section 6.3 of Bride and Lomax (1994). This logic has also been applied to the analysis of the investment 
strategy of Defined Benefit pension funds (see Exley, Mehta and Smith (1997)). DB pension investment 
strategy is discussed further below. 
383 There are also other important factors such as the tax treatment of different assets and how the tax 
treatment that applies to investments held by insurers differs from that which applies to other forms of 
investor. Such factors are doubtless important, but their economic implications are more straightforward, and 
in in the interests of brevity the topic of tax is not discussed here.  
384 This is another not-new idea. It dates back in the actuarial literature at least as far back as Bailey (1862) (no 
typo!). See Turnbull (2017) Chapter 3 for a fuller discussion. 



require a discount in the pricing of the insurance policy to compensate them for its illiquidity. This 

provides a rationale for insurers having some appetite for asset illiquidity (and passing any available 

illiquidity premium on to the policyholders in the form of a reduced insurance premium). This asset 

illiquidity appetite is distinct from an appetite for financial market risk, though it might be argued it 

is difficult to obtain material illiquidity premia (after costs) without being exposed to some market 

risk. 

Insurance firms in most major jurisdictions today operate under a regulatory system that includes a 

risk-sensitive solvency capital requirement. This means that when insurers’ asset investment risk is 

increased, shareholders will be compelled by regulators to hold more capital on the insurance 

balance sheet. It is generally accepted that the holding of this capital on the insurance balance sheet 

incurs a cost for shareholders. This cost is related to the frictional costs incurred by shareholders in 

tying up their capital on an insurance balance sheet (costs such as double taxation, management 

agency costs and the costs of financial distress)385. This suggests that, all other things being equal, 

the investment irrelevance proposition noted above should be taken a step further: it is not merely 

the case that shareholders should be indifferent to asset risk-taking on the insurance balance sheet, 

they should have a preference for less asset risk-taking on the insurance balance sheet (as this risk-

taking creates a cost of capital that could be avoided if the shareholder instead obtained these risk 

exposures directly).  

Nor does the taking of investment risk appear to be obviously in policyholders’ interests. Someone 

else is taking risks with their insurance premiums. The policyholder does not participate in the 

investment upside386. But the downside risk makes their promised benefits less secure (additional 

capital requirements notwithstanding). This suggests that the investment risk-taking could be a lose-

lose for shareholders and policyholders. But almost all insurers today have a material appetite for 

investment risk. Why? 

Economic theory can offer a form of explanation once it is recognised that the insurance balance 

sheet is leveraged by borrowing from policyholders. The shareholders’ equity claim on the firm can 

therefore be viewed as a call option on the firm’s assets – the shareholder gets whatever asset value 

is left over after creditors (including policyholders) have been paid, but limited liability means this 

amount cannot be negative. Viewing equity as a call option on the firm’s assets is certainly not a new 

idea. It dates back at least as far as the Modigliani-Miller theory of the 1950s and it was a major 

motivation for the development of option pricing theory in the early 1970s. 

Considering the policyholders of an insurance company as lenders to the insurance firm is also not a 

new idea387. Policyholders own a debt of the insurance firm (in the form of an insurance policy that 

obliges the insurer to pay the policyholder when specified events or circumstances arise). As a 

debtholder, they are exposed to the risk that the insurance firm’s assets will prove insufficient to 

meet their claim if and when it falls due. The policyholder is short a put option on the firm’s assets.  

From this perspective, an increase in asset risk (volatility) represents a transfer of wealth from 

policyholder to shareholder (all other things remaining equal): it increases the value of the 

shareholder’s call option on the firm’s assets; and there is an equal and opposite reduction in 

 
385 See, for example CRO Forum (2006). 
386 Clearly there are forms of insurance policy where the policyholder does participate in the investment 
upside, but here we are discussing the asset strategy for assets backing liabilities with no such linkage 
387 Again, see Bride and Lomax (1994), for example. 



policyholder value that arises from the increase in the value of the put option that the policyholder 

is short.  

This reduction in the value of the insurance policy could be incorporated into the pricing of the 

policy in the form of a reduction in the premium charged up-front to the policyholder. Such a 

reduction in the insurance premium would ensure that both the shareholder and policyholder share 

in the (potential) economic rewards that are associated with the firm’s chosen amount of 

investment risk-taking. The shareholder obtains a higher expected, but riskier, reward, and the 

policyholder still receives an insurance pay-out that is fixed with respect to investment risk, but 

which is now larger than it otherwise would be per £1 of premium (but which now comes with a 

greater risk of default). Insofar as the shareholder can increase risk without reducing the 

policyholder premium payable for a given insurance policy, the shareholder has an incentive to 

increase risk. 

Some may object to the rather invidious-sounding characterisation of insurance firms’ investment 

risk-taking as an attempted transfer of wealth from policyholder to shareholder. It could be argued 

that the policyholder benefits from this risk-taking as well as the shareholder – the shareholder 

shares the prospective proceeds of the risk-taking with policyholders in the form of an up-front 

(fixed) reduction in the premium for the insurance. So, is investment risk-taking actually a win-win? 

The central point of the above analysis is that it is only right that the policyholder is charged less for 

fixed promises when the shareholder takes investment risk with the policyholder’s premium. After 

all, their policy is worth less in the presence of the default risk created by the investment risk (albeit 

the policyholder may not fully appreciate that fact). Whether policyholders want a cheaper 

insurance policy that comes with more default risk is an interesting and open question that must 

ultimately hinge, at least in part, on how such products are sold and regulated.  

It might also be argued that insurance firms’ investment risk-taking with assets backing insurance 

liabilities is important for the wider economy. These funds are used to finance critical infrastructure 

and such like. If all of those assets were invested in risk-free bonds, the argument goes, they will 

simply make risk-free bonds even more expensive than their current all-time record levels. It could 

be argued in response that if insurance firms wish to participate in risk-taking in the real economy, 

they should design insurance products that produce a balance sheet liability structure that is fit for 

that purpose. This likely means allowing the policyholder to directly and explicitly participate in the 

investment returns of the assets (such as in unit-linked or with-profit-style product structures). 

Meanwhile, de-risking the investment strategy for ‘non-profit’ insurance liabilities would release risk 

capital, reduce investment management expenses and reduce the material costs of regulatory 

compliance that are associated with holding those assets under principle-based solvency systems 

such as Solvency II. 

The Defined Benefit Pension Fund Concept 

Specific approaches to assessing the funding adequacy of Defined Benefit (DB) pension funds, and 

their implications for investment strategy, will be discussed in Chapter 6.2. In the context of the 

current discussion of the risk appetite of actuarial financial institutions, however, it may be noted 

that the cost of future accruals of a DB pension depends on the future levels of phenomena such as 

interest rates, salary inflation, price inflation and longevity changes, all of whose behaviour is deeply 

uncertain. It may be possible to put in place investment strategies that can largely or partly mitigate 

the future variability of the costs associated with past accrued benefits, but this is much harder to do 

for future accruals. Variability in the future contribution rate required to meet the economic cost of 

newly accruing defined benefits is largely unavoidable, and the quantum of that long-term variability 

is subject to deep uncertainty. 



We can illustrate the sensitivity of the cost of DB pension benefits to movements in deeply uncertain 

variables such as the real interest rate by means of a simple example. Consider, for a scheme at 

inception, the rate of pension accrual that implies an economic value for the pension liability that is 

equal to the value of the stream of annual contribution rates set at 15% of salary. Exhibit 6.1 shows 

how this varies as a function of the real interest rate388. 

Exhibit 6.1: Break-even accrual rates as a function of the long-term real interest rate with a 

contribution rate of 15% of salary 

 

The chart highlights how conventional DB pension accrual rates are unlikely to be economically 

sustainable in low real interest rate environment. DB pension funds were simply not designed to 

work with negative real interest rates, and the chart suggests that an accrual rate of less than 

1/100th would be necessary to make them sustainable with a 15% salary contribution in a negative 

real interest rate environment. There is no natural mechanism, other than increasing contributions, 

available within the DB pension framework to respond to the increased costs that arise in such 

circumstances. In this illustrative example, an annual contribution rate of 58% of salary would be 

required to finance a 1/40ths accrual rate in the presence of a real interest rate of -1%. 

As we saw in Chapter 5, until quite recently actuaries, and indeed probably almost everyone else, 

viewed sustained long-term negative real interest rates as virtually or indeed literally impossible. If 

the long-term real interest rate behaved in the way described in Wilkie’s 1995 model (see Exhibit 5.2 

above) - that is, it always remained within the range of 3%-5% - then DB pension finance with a 

1/40ths accrual rate is sustainable and really quite straightforward. But, as discussed in Chapter 5, 

there was no epistemic basis for confidently assuming real interest rates will behave in this way 

indefinitely into a multi-decade future. Once we accept the reality that real interest rates of -2% are 

as possible as real interest rates of +2%, the scale of the potential variability in the costs that the 

sponsor is required to bear in providing its employees with a DB pension is enormous in the context 

of overall remuneration and staffing costs. 

 
388 This simple illustration considers a male joining the pension fund at age 25 and retiring at 65. The mortality 
rate basis assumes a(90) without mortality improvements. Real salary growth is assumed to be zero and the 
pension is assumed to be inflation-linked. 
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Exhibit 6.1 highlights a broader, and even more fundamental challenge to pension finance. 

Irrespective of the specific form of advance funding of pension provision – Defined Benefit, Defined 

Contribution or something else in the middle – the economics of saving for a pension are profoundly 

challenged by a negative long-term real interest rate. If such economic conditions are to prevail for a 

long period of time, there seems no obvious alternative financial solution to the affordable funding 

of pension provision than for individuals to work much later into life than has been the case in 

recent decades.  

To be clear though, it is not being argued here that negative real interest rates are in some sense 

inevitable for many years to come. The arguments of Chapter 5 highlight the folly of such an 

assertion. Perhaps the only basis for optimism is to note that uncertainty works both ways – whilst it 

may not seem that way given the history of interest rate movements over the last forty years, future 

real interest rate changes may surprise on the upside as well as the downside. Whatever the 

proposed financial solutions to our current pension challenges, the actuarial analysis should not 

assume that deep uncertainty in the outlook for real interest rates and other important economic 

and demographic variables does not exist.   

6.2  Risk and capital measurement 
Chapter 5 discussed some of the ways in which actuarial models are used in the development and 

delivery of the professional output of actuaries. The chapter also argued that there were at least 

some areas of current professional practice (such as principle-based capital assessment) where 

alternative governance structures and transparency standards could lead to improved outcomes. 

Central to this argument was the idea that the deep uncertainty associated with the socio-economic 

phenomena of actuarial interest made models more useful as interpretative tools in the hands of 

experts who deeply understand them, rather than as answer-generating machines developed by 

experts to deliver answers to lay clients or authorities. 

The discussion recognised that this created a problem of how to oversee experts and expert advice. 

Indeed, this was the one of the issues that resulted in the use of actuarial models changing in the 

directions that it has done in recent decades. We argued that, in the topical example of principle-

based regulatory capital assessment in insurance, extensive peer review through public disclosure of 

detailed actuarial reasoning would be a better form of quality assurance than the private internal 

model approval process used in systems such as Solvency II today. We also noted this was generally 

consistent with the broader academic literature on oversight of expert advice in quantitative 

modelling, which is focused on obtaining a form of consensus amongst experts as the primary means 

of overseeing the quality of expert advice. 

This section considers some more specific topics in quantitative actuarial reasoning and develops 

some methodological suggestions that may have contemporary actuarial relevance. Before doing so, 

we may note that in the financial world advocated in Chapter 6.1, actuarial risk measurement would 

be more straightforward than it is today - as many of the exposures to deep uncertainty that are 

accumulated by today’s actuarial financial institutions would not be present on their balance sheets 

in a Chapter 6.1 world, at least not to the degree they are today. Instead, the vast bulk of risks on an 

actuarial financial institutions’ balance sheet would be diversifiable and would indeed be diversified 

away on the balance sheet. The institution’s function would be to facilitate efficient, orderly and 

equitable pooling of diversifiable risks. The challenge of attempting to measure the consequences of 

accumulated exposures to deep uncertainty would therefore be largely avoided in this setting. 

The two topics below, however, reflect the world we are in today, and the world we will continue to 

have to manage given the legacies of long-term business created in the past. And this means 



wrestling with the impossible task of measuring deep uncertainty. Solving the impossible is, 

thankfully, beyond the scope of this work. Nonetheless, the following analysis will use some of the 

insights garnered in this work’s philosophical reflections to attempt to identify satisfactory 

methodological approaches in the presence of deep uncertainty. 

The measurement strategies that are developed in both the case studies below have one key aspect 

in common that may be particularly apparent if you recall the discussion of the anatomy of actuarial 

models in Chapter 5.2. There, it was noted that actuarial models can be usefully considered as 

having two elements: the first being concerned with the projection of future cashflows, and the 

second with the transformation of those cashflow projections into some form of present value 

metric through the use of a form of discount function. The approaches developed in both the 

examples below can be viewed as approaches to finding a form of discount function that makes the 

present value metric more robust and less sensitive (though still not completely insensitive) to 

measurements of deep uncertainty. Put another way, in both cases we try to answer questions that 

are more capable of being reliably answered than the conventional questions of actuarial 

consideration. 

Case Study (1) – Defining the quantitative metric for risk-based capital assessment in insurance 

Actuaries in the UK have been assessing probabilistic risk-based capital requirements for at least 

some types of long-term guarantees found in life business since around 1980389. Different 

approaches have been taken to defining a risk-sensitive probabilistic capital measure, and these 

different definitions imply a different set of calculations are required to assess the defined measure. 

These different approaches are discussed further below. Before doing so, we will first note they each 

have some key features in common.  

The probabilistic capital requirement is assessed by estimating the capital required to be held today 

such that the probability of some adverse future solvency outcome occurring at some future point(s) 

in time (which could be a specified interval of time; any time in the future; or after the final liability 

cashflow is paid) is no greater than some specified level, given the risks on the balance sheet and 

how they are managed. So, the approaches differ in their definitions of what constitutes an adverse 

solvency event, over what time horizon it is considered, and what level of probability the capital 

requirement should support for the adverse solvency event. In all cases, this assessment is made 

using some form of stochastic model, and this is usually implemented using Monte-Carlo simulation. 

Irrespective of the time horizon of the capital measure, the models may make stochastic projections 

of asset returns and other relevant phenomena over the lifetime of the liabilities (for liabilities 

whose value depends on future asset returns). These stochastic projections are used to infer some 

form of probability distributions for the liability cashflows that may arise at different times. These 

probability distributions are then transformed into some form of present value metric as required by 

the capital definition.  

There are different ways of specifying the present value discount function used in the above process, 

and these correspond to different definitions of the adverse solvency outcome that is used in the 

risk-based capital assessment. The origins of the ‘traditional’ (in the UK) actuarial approach to risk-

based capital assessment can be traced back to the development of risk theory in Scandinavia in the 

years following the end of the Second World War390. These ideas were applied to the long-term 

financial risks associated with the long-term maturity guarantees of unit-linked business by Sidney 

 
389 See Turnbull (2017), p. 194-204 for historical background. 
390 See Turnbull (2017), Chapter 7, pp. 286 – 292 for some historical background on the actuarial development 
of risk theory. 



Benjamin, a leading UK actuary, in the 1970s391. This approach to defining the capital requirement 

for a guarantee calculates the amount of assets that should be held today such that, along with the 

accumulation of any regular premiums charged for the provision of the guarantee, the probability of 

having insufficient assets to meet all guarantee cashflow shortfalls as they fall due is no greater than 

a specific size (and this size of probability may be referred to as the probability of ruin). This 

approach is sometimes referred to as the ‘run-off’ approach. It was officially sanctioned by the 

Institute and Faculty of Actuaries in 1980 when a Working Party tasked with considering the topic of 

reserving for these long-term maturity guarantees advocated this approach (with a probability of 

ruin of 1%)392. 

The modelling mechanics of the run-off approach requires the probabilistic projection of the returns 

of the assets that the guarantee is written on, as well as the returns for the investment strategy 

pursued for the capital and the premiums charged for the guarantees, over the full time horizon of 

the guarantee. The cashflows shortfalls can then be projected as a function of the underlying asset’s 

investment returns, and discounting using the returns that are associated with the assumed 

investment strategy for the capital. With a 1% probability of ruin, the 1st percentile of the probability 

distribution of the present value then defines the capital requirement. This run-off approach, based 

on assessing the probability of being able to fund all liability cashflows as they fall due given a 

starting level of assets and investment strategy, naturally extends to any form of liability. Again, the 

approach will require (joint) probability distributions for the behaviour of all phenomena that may 

materially impact on the cashflows of the assets and liabilities over the full term of the liability 

cashflows. The content of Chapter 5 (Exhibits 5.2 and 5.3, for example) may inculcate a certain sense 

of concern at the prospect of being professionally required to produce a reliably accurate estimate 

for such a capital definition.  

An alternative probabilistic definition of a risk-based capital requirement, Value-at-Risk (VaR), 

emerged in the banking sector in the 1990s, and was notably adopted in the European Union’s 

Solvency II regulatory framework for insurance firms when it was implemented in 2016. It is also 

used in the International Association of Insurance Supervisors’ proposed Insurance Capital 

Standard393. 

The key idea underlying the VaR approach is that the capital requirement is based on an assessment 

of the cost of transferring the liabilities to a third-party in a stressed near-term scenario. This is 

calculated in two stages:  

• First, by calculating the cost of transferring the liabilities to a third party today;  

• Second, by probabilistically projecting how this cost may change over the specified near-

term projection horizon; 

• And, finally, by finding the capital required to fund the increase in cost that arises at the end 

of the projection horizon with some specified level of probability (note the amount of capital 

required to fund the increase in cost will depend on how the assets backing the liabilities are 

invested; for example, if a reserve equal in value to the current cost is invested in a perfect 

hedge, no capital will be required in excess of this reserve as the end-period asset value will 

be equal to the end-period liability value in all states of the world). 
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The first calculation – calculating the cost of transferring the liabilities to a third party today - uses 

insights from the developments in option pricing theory of the 1970s and the more general 

economic valuation theory that followed it in the 1980s to specify a stochastic discount function 

that, when applied to the stochastic cashflow projection of the liabilities over the full term of the 

liability cashflows, will deliver the current ‘market-consistent’ cost of the guarantee. This is often 

referred to as ‘risk-neutral valuation’, which is a somewhat unfortunate and confusing misnomer, as 

the essential idea of the whole approach is based on the theoretical insight that the valuation is the 

same in a risk-neutral, risk-averse and risk-seeking world. But that is a point of technical detail. The 

essential point is that the cost of transferring the liabilities to a third party today is estimated with 

reference to the current market prices of relevant assets. There will usually be an insufficient 

availability of such assets to definitively determine the ‘market-consistent cost’ of the liabilities, and 

some extrapolation, interpolation and estimation will therefore usually be necessary on the part of 

the actuary performing the valuation.  

The second and third parts of the process involves projecting this cost, and the assets backing it, 

over a short period of time and estimating the assets required such that the market value of the 

assets exceeds the market-consistent cost of the guarantee with some specified probability level. In 

Solvency II, the time period is 1 year and the probability level is 99.5%. One rationale for the 

assumed time period is that it represents the length of time it would take to practically implement 

the transfer of the liability to a third-party. 

In the discussion above, we have supposed that both the run-off and VaR approaches use a specified 

percentile level as the probabilistic ‘tolerance’ level. Numerous technical studies have considered 

whether a percentile point is as statistically robust as other tail measures such as Conditional Tail 

Expectations (CTE) in defining the probabilistic measure of risk-based capital requirements394.  This 

consideration of how to define the tail risk arises under both the run-off and VaR capital definitions. 

That is, under either approach, a y% CTE could be assessed instead of using the xth percentile. 

These two definitions of risk-based capital requirement will behave quite differently. They may 

exhibit distinctly different sensitivities to changes in financial market prices. They also rely on 

different assumptions. One of the arguments forwarded in favour of Solvency II’s adoption of a 1-

year VaR definition instead of the run-off approach was that it did not rely on so many subjective 

parameter choices, and hence the 1-year VaR approach would be more objective and scientific. For 

example, the run-off approach is highly sensitive to long-term assumptions for asset risk premia and 

its path behaviour, and the VaR assessment is not sensitive to this assumption to the same degree. 

Nonetheless, the estimation of a 1-year 99.5th percentile estimate for an equity return is not self-

evidently more reliable than a 95th percentile estimate of the 30-year equity return. In both cases, 

the same basic difficulty arises: the instability and non-stationarity of our human world means the 

estimation of these types of probabilities are intrinsically unreliable. 

Although Solvency II did not come into force until 2016, its conceptual framework was established in 

the early 2000s. Since the global financial crisis of 2008, there has been a shift in intellectual 

sentiment (if not actuarial practice) away from the market-consistent VaR approach and back 

towards something more like the traditional actuarial run-off approach395. But we are fooling 

ourselves if we think either of these definitions of risk-based capital requirement can be statistically 

measured in any meaningful, reliable sense. The debate over which approach is better is 

 
394 See, for example, Hardy (2006) for a comprehensive introductory treatment in an actuarial context. 
395 See Turnbull (2018) for a fuller discussion of this change in sentiment that has been voiced by some leading 
central bankers, policymakers and industry leaders. 



interminable because neither of the alternatives under consideration are satisfactory. The consensus 

ranking of market value and run-off solvency approaches will therefore go through cycles where one 

approach is tried for a while, then inevitably found to be unreliable, thereby leading to a switch in 

the consensus view so that the other is then regarded as being quite self-evidently superior, and the 

cycle will repeat again. Meanwhile, debates about the mathematical and statistical properties of VaR 

versus CTE when applied as risk measures for financial market risk are like arguing over how best to 

estimate how many angels can dance on a pinhead. This conclusion leads to the obvious question: 

but is there anything better? 

Before attempting an answer to that question, it is important to clarify a key point in this discussion: 

the substantial epistemic limitations of both the run-off and VaR approaches to risk-based capital 

assessment do not imply that these forms of modelling analysis are of no value to the actuary. On 

the contrary, both the run-off and VaR definitions of risk-based capital requirements can provide 

useful and insightful models of capital requirements that can be informative in the hands of an 

expert who has a deep understanding of the models and their limitations.  

To illustrate this point, recall the historical episode of the Maturity Guarantees Working Party and 

the assessment of capital required to back those guarantees using a run-off approach. This work, 

and some of the actuarial research that preceded it, highlighted a vital truth: that life assurers at the 

time were writing very significant long-term guarantees and did not appreciate the level of non-

diversifiable financial risk that these guarantees generated. The stochastic modelling used by the 

Working Party robustly demonstrated that this risk was undoubtedly material and that reserving 

methods ought to be updated to better reflect these risks. However, having obtained this insight, 

actuaries could have been left to use their own expertise and judgement to determine an 

appropriate reserving method, rather than having one essentially prescribed. The prescribed method 

was, naturally, full of limitations, and the prescription reduced actuaries’ incentive to further 

innovate, learn and improve the capital requirement-setting process. 

Likewise, a VaR analysis can also bring its own insights into the form and quantum of risk exposure 

and the amount of capital required. The two capital measures can be especially insightful when 

considered in conjunction with each other. For example, if the run-off capital model implies a 

substantially smaller capital requirement than the VaR assessment, this may imply the result is 

especially dependent on assumptions that do not materially affect the VaR assessment (such as long-

term risk premia assumptions or asset return mean-reversion). These alternative capital definitions 

and implied modelling approaches can be viewed as complementary diagnostic tools for the actuary, 

rather like, say, how both MRI scans and blood tests may be used by a doctor: they provide 

diagnostic evidence to the expert, who considers all of the available information at hand to make the 

diagnosis and prognosis for the unique case under consideration. 

Let’s now return to the question: is there a probabilistic definition of a risk-based capital 

requirement that is in some sense better than the VaR and run-off approaches? Here an approach is 

proposed that is arguably superior to both the VaR and run-off approaches, and superior in two key 

respects: it has greater economic meaning and consequence than the other two approaches; and it 

relies less on attempts at probabilistic measurement of the deeply uncertain.  

The basic idea of this approach is based on the recognition that, in the context of an insurance firm 

with non-linked liabilities, risk-taking (for example, with a risky asset strategy) can be viewed as 

increasing the shareholder option to default, and hence as a form of wealth transfer from 

policyholder to shareholder (as discussed above in Chapter 6.1). In this setting, the role of prudential 

solvency regulation can be viewed as limiting this transfer of wealth from policyholder to 



shareholder. This can be done by requiring the insurance firm to hold more capital as asset risk is 

increased. The increase in capital reduces the ‘moneyness’ of the option to default. This can 

(partially) offset the impact on the option value of the increase in asset volatility. 

Such a model of shareholder incentives and regulatory control provides a potentially interesting 

perspective on the purpose and effect of prudential solvency regulation. More than this, it may even 

point to a way of quantifying prudential capital requirements. As an alternative to a run-off or VaR 

definition of capital requirements, the capital requirement can be defined as the amount of capital 

required such that the default put option is limited to some specific level. For example, we might 

define that level as 1% of the present value of the policyholder liability (valued when it is assumed to 

be default-free). This option valuation would refer, where available, to the market prices of traded 

options in the risks that drive the capital requirement. 

Let us develop a very simple (and rather pathological) example to illustrate the dynamics of this 

approach at work. Suppose an insurer has a 10-year fixed liability cashflow of 100, and the basic 

reserve for this liability is assessed by discounting the cashflow at the 10-year risk-free rate. The 10-

year risk-free rate is 2% (continuously compounded) and the basic reserve is therefore 81.9.  

Instead of investing in the 10-year risk-free bond, however, the insurance firm decides to invest this 

reserve entirely in an equity index. To assess the capital requirement under the run-off approach, 

the probability distribution for the 10-year equity index value would be required. To assess this 

capital requirement under a 1-year VaR approach, the joint probability distribution for the 1-year 

equity index value and the 1-year change in the 9-year interest rate would be required (the 9-year 

interest rate is required in order to value the liability cashflow after 1 year, as required by the VaR 

calculation).  

How would this capital be assessed using the default option approach? The shareholder option to 

default can be valued as a 10-year put option on the equity index with a strike of 100 and a spot 

value of 81.9. Further suppose the 10-year equity index put option at this strike has a Black-Scholes 

implied volatility of 16%. Then, in the absence of any additional capital, the shareholder option to 

default has a value of 16.4, which is 20.0% of the basic reserve. Now suppose additional capital will 

be held and will be invested in the matching risk-free bond. This capital requirement definition 

requires us to answer: how much additional capital is required to reduce the put option value to 1% 

of the basic reserve? The answer is 43.5. Investing this additional amount today in the risk-free bond 

reduces the strike of the 10-year option by 53.1 from 100 to 46.9. When the put option’s strike is 

reduced to 46.9, its value is reduced from 16.4 to 0.82, i.e. 1% of the basic reserve. So, this approach 

has assessed that a capital requirement of 46.9 results from investing the 81.9 of basic reserve in 

equities instead of the matching bond. 

This measure of solvency capital requirement has some distinctive features relative to the VaR 

approach used in Solvency II and the run-off approach that has been used widely in recent actuarial 

history. In particular, it offers two advantages over these other quantitative definitions for risk-

sensitive capital requirements: 

• This definition of solvency capital makes no direct use of probabilities. This is philosophically 

appealing to the social science anti-positivist who cannot subscribe to the idea that these 

probabilities can be estimated with reliable accuracy or, indeed, are particularly meaningful. 

 

• The capital measure defines how much of the risky asset return should be passed over to the 

policyholder in the form of a (fixed) reduction in the premiums charged for the insurance 



policy (if the capital requirement is defined at the 1% level that would be commensurate 

with a 1% reduction in the premium charged). This measure is therefore a more economically 

meaningful quantity than an arbitrary percentile (or Conditional Tail Expectation) level. 

However, such a definition is, of course, no panacea. Many of the financial market risks (and non-

financial risks such as longevity risk) that are found on insurance balance sheets are not risks for 

which there are observable traded option prices. As a result, the option valuation exercise described 

above would need to use a valuation method that heavily relied on ‘real-world’ probability estimates 

to generate inferred values for these non-existent option prices. But actuaries already regularly 

make use of such assumptions in the valuation of contingent liabilities such as with-profit 

guarantees, so this does not present any significant new challenges beyond what is already required 

by the VaR approach. 

Case Study (2) - The Advance Funding of Defined Benefit Pension Funds 

The advance funding of private sector Defined Benefit (DB) pensions has been an established feature 

of employee remuneration in the UK since the latter part of the 19th century (though today it has 

reached the stage of managed terminal decline)396. Actuarial advice on the setting of contribution 

rates and the broader financial management of these pension funds has been one of the core areas 

of UK actuarial practice for over 100 years. 

Much of this actuarial work is involved with the estimation of pension fund members’ future 

mortality rates, salary increases, and so on as part of the projection of the long-term liability 

cashflows of the pension fund. As per Chapter 5.4, there is considerable scope for errors in the long-

term prediction of these variables and the liability cashflows that depend on them. But the most 

historically contentious and consequential aspect of actuarial work in DB pensions lies not in the 

projection of liability cashflows per se, but in the way the projected liability cashflows are 

transformed into a liability ‘valuation’. That is, in the language of Chapter 5.2, it is the choice of 

discount function that is used in the actuarial model to transform the projected cashflows into some 

form of present value metric that is the most interesting aspect of actuarial methodology in DB 

pensions.  

This liability valuation can be used to perform at least a couple of tasks: it can determine what is 

commonly referred to as the current funding level of the pension fund - whether there is, in the 

actuary’s professional opinion, sufficient assets in the pension fund today, given the pension fund’s 

liabilities, asset strategy, strength of sponsor, and so on; and it can be used to determine the 

contribution rate that the actuary believes will be sufficient, when considered alongside the current 

assets of the fund, to meet future liability cashflows as they fall due, again given the fund’s asset 

strategy. 

How does the actuary determine whether the current funding level of the pension fund is adequate? 

A measure of the funding adequacy of a Defined Benefit pension fund should naturally follow from a 

basic starting rationale for the advance funding of the benefits: in order to assess how much is 

enough, we must first be clear why there is a need for any at all. Historically, a number of such 

rationales have been forwarded and discussed by the actuarial profession397. The debate about the 

primary purpose of advance funding of DB pensions has arguably never been adequately resolved 

within the UK actuarial profession. As early as 1911, three main candidate rationales had been 

documented and discussed in the actuarial literature: to provide security of benefits to the 
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employee who had been promised long-term pension benefits by a private sector employer; to 

reduce the ultimate cost of providing the pension through successful investing of the advance 

contributions; to smooth the annual expense to the provider of the pension promise398. These are 

three very different reasons for advance funding, and they imply very different ways of determining 

the rate of advance funding and how (or, indeed, if) funding adequacy is measured.  

The last of the three rationales discussed in the 1911 paper described above had already became the 

dominant perspective that drove actuarial methods in DB pensions at this time. This remained the 

case throughout most of the 20th century and arguably even to this day. That is, the fundamental 

actuarial assessment in DB pensions is the calculation of the contributions, expressed as a constant 

proportion of salary, that are required to provide a reasonable expectation that the pension 

promises can be paid in full as they fall due. 

Pension actuaries have many subtle definitional variations on that theme, but the key point here is 

that this measure of the required contribution rate and related assessments of funding adequacy are 

assessed using long-term and subjective estimates of various socio-economic phenomena such as 

price inflation, salary inflation, risk-free interest rates, excess expected returns of risky assets, and 

longevity improvements. From the perspective of the sceptic of positivist methods in social science 

as articulated in this work, it is very hard to see how these assumptions can be estimated with any 

reliable accuracy. It may be countered that this does not really matter; that by continually updating 

our best estimates of these assumptions and revising our recommendations as a result, the finances 

of the DB pension fund can be steadily steered in the correct long-term direction.  But once we 

recognise such non-stationarity and uncertainty in these phenomena, the entire perspective of 

estimating a long-term stable funding strategy surely starts to sound like an unsatisfactory answer to 

the wrong question. 

This approach to assessing the financial health of DB pensions also ignores what is arguably the most 

important rationale for advance funding of DB pensions: to provide security today for the benefits 

that have so far been promised to the pension fund member. It is the risk that the sponsor proves 

unable or unwilling to meet their accrued pension promises that provides the rationale for putting 

pension fund assets in a legal trust structure distinct from the employer balance sheet. It is this risk 

that elevates actuarial advice on DB pension fund management beyond being just another part of 

the finance function of the sponsoring employer. If it could be known that a pension fund sponsor 

could never default on their pension promise, the need for advance funding of DB pensions would 

be vastly diminished. And, similarly, the particular level of funding of a pension fund at any given 

point in time would be a concern to no one but the sponsor.  

Once, however, the risk that the sponsor may prove unable to meet the future cost of past accrued 

pension benefits, the security rationale for the advance funding of DB pensions is obvious. 

Moreover, a clear funding adequacy test logically follows from this advance funding rationale that is 

quite distinct from the long-term funding level and contribution rate estimate approaches described 

above: from the member security perspective, the pension fund should have sufficient assets to fund 

the transfer of the accrued pension promises to a financially secure third-party at any time (including 

now, and, in particular, in the potential future circumstances that lead to the employer sponsor 

becoming financially distressed). Such an assessment of funding adequacy does not rely to the same 

degree as traditional actuarial pension funding assessments on long-term subjective estimates of 

socio-economic phenomena.  

 
398 Manly (1911), p. 219; Turnbull (2017), p. 237 for further discussion. 



Whilst it has never dominated pension actuarial thought, the argument for giving priority to the 

security rationale for advance funding is not a new idea. It certainly features in the pension actuarial 

literature of the 1970s and 1980s399. By the end of the 1980s, there was an increasing acceptance 

that the cost of securing the benefits with a third party should be considered in the actuarial analysis 

of DB pensions. Some leading pension actuaries proposed that this buyout cost ought to define a 

minimum funding level for the pension fund400. This type of thinking led to new UK government 

legislation in the mid-1990s that was intended to ensure that such a minimum funding level was 

achieved by private sector pension funds. But the ‘Minimum Funding Requirement’ was fudged and 

watered down to such a degree as to be largely ineffectual.  

With the benefit of hindsight, this may be seen today as an opportunity missed. The unexpected falls 

in long-term interest rates and the lower future assets returns that are anticipated as a result means 

that the ‘traditional’ actuarial strategies for DB pension fund management have not fared well over 

the last 25 years. At the time of writing, the aggregate deficit of UK private sector pension funds on a 

‘buyout’ basis is well over £500bn401. Of course, pension actuaries cannot be faulted for failing to 

predict the unprecedented falls in interest rates of the last 25 years. But this rather misses the point. 

If actuarial methods had placed greater focus on the security rationale, their methods would not 

have relied on these predictions to the same extent. The actuarial answers required by the security 

rationale do not require assumptions about the equity risk premium or the expected risk-free 

interest rate over the next 40 years. It is a simpler question that is more robust to deep uncertainty. 

Moreover, it is one that is better aligned to pension fund members’ interests. If the financial 

management (contribution rate, funding adequacy, investment strategy) of DB pension funds had 

been primarily driven by the benefit security rationale over the last 25 years, the DB pension fund 

sector would be in materially better financial health than it is today.   

What generalisations can we make from these examples? 

Hopefully, the previous 100,000 or so words of epistemic scepticism have imbued the reader with a 

reticence to make sweeping universal generalisations on the basis of a couple observations. 

Nonetheless, the logic that has been applied in the development of these two case studies is 

fundamentally similar in some respects. The most obvious similarity between the two examples is 

that they have attempted to resolve a ‘traditional’ actuarial question that is based on the subjective 

measurement of long-term expectations and / or probabilities into a question that is based on 

current economic values that make use of available market prices. It was argued in each case that 

this alternative calculation was more robust to deep uncertainty and more economically meaningful 

and informative as a risk management metric. 

It was noted above that the estimation of the current economic value of actuarial liability cashflows 

will rarely be completely straightforward. Liquid financial markets will usually only provide a sub-set 

of the information required to estimate these values. But some is better than none. For example, in 

the insurance capital case study, the observed equity index option price provided a crucial input into 

this capital assessment calculation. It removed the need for subjective estimates of the joint 1-year 

99.5th percentile changes in the equity index and 9-year interest rate (VaR approach) or the 10-year 

equity index total return distribution (run-off approach). But if the investment strategy had been 

more exotic than an equity index – say, including a range of asset classes that are not publicly 

traded, such as real estate or private equity, it would be much harder to find relevant option prices 

to input into the capital assessment process. In this case, there will be little choice but to estimate 
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these option prices using probabilistic assumptions together with other market prices of less direct 

relevance to the liability under consideration. Similarly, market prices will not be available for a 

range of typical insurance balance sheet risks such as longevity risk. But, in the absence of a liquid 

market for longevity risk, the modelling assumptions required for longevity risk in a market value-

based analysis are not any more demanding than the assumptions required in a subjective 

probability-based modelling exercise. 

We have forwarded two fundamental and distinct arguments in general favour of market value-

based approaches to actuarial risk and capital assessment: these approaches will tend to be more 

reliably accurate and more robust to deep uncertainty than subjective probabilistic approaches; and 

they will provide information that is more meaningful and useful in decision-making. Let’s briefly 

consider these two arguments further. 

There is an epistemic argument for expecting a market value-based assessment to be more reliably 

accurate than a subjective probabilistic approach. Market prices in well-functioning markets are, 

arguably, valuable sources of information on consensus expectations. In the terminology of Chapter 

1, market prices are set by the intersubjective probabilities of market participants. There is a strong 

epistemic argument for preferring intersubjective probabilities over an individual expert’s subjective 

view. Indeed, approaches to ‘structuring’ expert opinion such as the Delphi method are concerned 

with the aggregation of expert opinions into consensus views. This is essentially an effort to move 

from an individual’s subjective probabilities to consensus intersubjective probabilities. In well-

functioning markets, market prices can do that job for us.  

Moreover, this type of analysis is likely to provide more meaningful information, with more direct 

consequences and potential for use in decision-making. This is because the analysis based on market 

prices naturally provides more directly actionable insight. In the pension fund example, the metric 

identifies the means of managing the most tangible form of risk that the members of funded 

pension schemes face (that the pension fund has inadequate assets to meet the market cost of 

transferring the liabilities in the event of sponsor default). In the insurance capital case study, the 

economic value approach could be used to determine how to fairly price the insurance product. In 

the earlier discussion of Guaranteed Annuity Options, market value-based analysis provided key 

insights into forms of liability hedging strategy that could be implemented at that point in time.  

The more traditional actuarial analysis provides a more ‘passive’ analysis. Their long-term nature 

provides less insight into immediate decision-making choices. The counterargument to this point is 

that a focus on market prices encourages too much focus on the short-term. There has been a very 

long historical tradition of actuaries being reluctant to make use of market prices because they are 

viewed as exhibiting excess short-term volatility that is felt to be irrational. And there is a significant 

stream of empirical economics research that can be used to support this perspective402. There seems 

to be little doubt that market prices are affected by a range of factors beyond an asset’s expected 

cashflows and risk. And, in the language of probability, this significantly complicates the discovery of 

the intersubjective probabilities that are implied by market prices. But not all actuarial clients have 

the luxury of dismissing irrational market prices. Returning to the pension fund example, when a 

sponsor defaults, the value of the pension fund asset portfolio and cost of liability buyout are what 

the market says they are, not what the pension actuary believes they ought to be. 
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Finally, it should be emphasised that the above perspective is not an argument for exclusivity: this 

discussion assumes a context where the actuary can use models and their metrics in an interpretivist 

rather than positivist way. In that setting, a range of diverse analyses (market value-based and 

subjective probabilistic) can provide an array of useful insights that the actuary can make use of in 

their professional work. The thrust of the above discussion is that, despite some movement in this 

direction over the last twenty years or so, market value-based analyses remain under-utilised in 

actuarial science, and they remain an untapped source of profound insight for actuarial science 

when used well. 

You may or not agree with the specifics of these illustrative examples. They are complex topics that 

have been treated quite superficially above. But hopefully the consistent way of thinking that runs 

through them is illuminating, or at least thought-provoking. Chapters 6.1 and 6.2 can be summarised 

as follows: 

• Actuarial financial institutions should eschew the accumulation of forms of risk exposure that 

are subject to deep uncertainty. 

• In the absence of such deep uncertainty, risk measurement is more straightforward. In that 

context, the actuarial role will be concerned with the efficient and equitable pooling of 

diversifiable risks. 

• Where deep uncertainties are accumulated, the use of available market prices will be useful 

both as a means of inferring intersubjective probabilities for the future behaviour of these 

phenomena; and as the basis for actionable insight on relevant risk management choices. 

6.3 Data science and actuarial science 
We conclude our review of the methodology of actuarial science with a discussion of the emerging 

methods of data science and their potential implications for the future of actuarial science. The 

discussion begins with some basic background on the historical development of data science and its 

notable features; we then provide a high-level overview of some of the most popular methods of 

data science, and discuss some of their methodological features; finally, we consider how this 

description of data science fits with the characterisation of actuarial science developed above, and 

what this suggests for the future methods of actuarial science and how they may make use of the 

techniques of data science. 

Data science: some historical background and the basic ideas 

The world has been in the throes of a ‘digital revolution’ since the electronic integrated circuit was 

first developed in the 1950s. The first and most direct consequence of this revolution has been a 

huge increase in computer processing power and speed: computation speed increased by a factor of 

a million between the 1950s and 2015403. There is a second key dimension to the digital revolution: 

the increase in the quantity of data that is available about the world around us. Today we live in a 

world that is continuously generating and storing quantifiable data about the physical world, and, 

increasingly, about human behaviour: countless networked wireless sensors continuously make 

quantitative recordings of all sorts of natural and human phenomena; website browsing histories 

grow continuously; and so on. And the cost of storing this data has shrunk enormously in recent 

decades – the cost of storing a gigabyte of data on a hard drive has fallen from close to $1m in the 

1980s to 3 cents by 2014404.  
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Over the last twenty years or so, a field of study has emerged that is interested in how this data, 

which may be generated incidentally as the by-product of some other intended purpose (sometimes 

referred to as ‘found data’), can be put to use in the identification of patterns and relationships that 

can facilitate useful and reliable predictions about the future. This specific field of data science is 

sometimes referred to as predictive analytics. It has been applied to make predictions for just about 

anything on which relevant data can be found (future crime rates; the ranking of suspected 

fraudulent financial transactions; consumer spending patterns; infectious disease outbreaks; etc.).  

The term ‘Big Data’ was first used in the early 2000s in the field of astronomy when new digital 

instrumentation generated a previously unprecedented amount of quantitative observational data. 

But in more recent years much of the interest in big data has migrated to the study of human 

behaviour and social phenomena. To date, however, the existence of this data has not 

revolutionised the empirical methods of academic research in the social sciences (which are still 

dominated by empirical techniques such as the Randomised Controlled Trials method discussed in 

Chapter 3). The main applications of big data in the analysis of human behaviour in recent years has 

not been for the purposes of the advancement of scientific knowledge in the social sciences, but to 

identify commercially valuable predictions about the tendencies of individual people. This distinct 

interest in prediction, as opposed to the more traditional objectives of statistical analysis of 

providing explanation or description, will be discussed further below. But put simply, the analytical 

focus of big data is on predicting what happens next, rather than delivering insight or explanation 

into why or how.  

The world of data science, despite being described above as the product of a form of technological 

revolution, can no doubt be placed within the long-existing domain of statistical inference: after all, 

it unambiguously involves using historical data to make inferences about the likelihood of particular 

things happening the future. But the above brief outline already provides some indication that the 

sort of modelling and analytical processes that are applied in data science may be quite distinct to 

those used in classical statistics. In particular, in big data applications: 

• The sheer size of the data samples that arise may be of a different order to classical statistics 

– sample sizes may be measured in the hundreds of millions or more (whereas it is not 

uncommon for classical statistics to work with data samples measured in the hundreds or 

even less);  

• The number of dependent variables that are potentially relevant may be measured in the 

hundreds or thousands (whereas the methods of classical statistics usually work well up to 

around 20);  

• And the emphasis on predictive performance rather than explanation or description is 

different from the usual emphasis of classical statistical inference (for example, predictive 

modelling may not be very interested in ideas that are central to conventional statistical 

modelling such as the statistical significance of a given variable or hypothesis testing). 

This distinct flavour of statistical inferential method has its own name. The analysis of big data using 

computerised prediction methods falls under the general term of machine learning. It is a relatively 

young and fast-evolving field. Its essential structure, however, is straightforward:  

• A set of data exists (this data is sometimes called learning data, training data or training 

examples) that consists of n observations;  

• Each observation can be considered as a pair of data elements. One element is the response 

variable (the property we are interested in predicting in the future) and the other element 



consists of a vector of predictors or covariates (the properties that may be useful in 

predicting the behaviour of the response variable)405;  

• A machine learning algorithm is applied to the data to generate a model or rule that can 

make predictions for the value of the response variable when presented with any vector of 

predictors (there are many different types of algorithm of varying degrees of complexity that 

may be used here); 

• Predictive performance is assessed using out-of-sample validation testing, i.e. by comparing 

the response variable results produced by the model with the results from a data set that 

was not used in the model fitting. 

n = all? 

Some big data ‘evangelists’ have argued that the pervasiveness of big data turns the basic statistical 

concept of a sample into an anachronism: ‘the need for sampling is an artefact of a period of 

information scarcity, a product of the natural constraints on interacting with information in an 

analogue era’406.  

We have, it is argued by these writers, reached the age of n = all. This is a highly aspirational 

perspective that is in danger of fundamentally missing the point. On the face of it, an n = all world 

has no need for any form of statistical inference, or indeed any form of inductive inference. After all, 

if we have already observed the entire population and all its characteristics, there is nothing left to 

infer about it. Computing power has indeed led to some such situations. Chess end-games provide a 

good example407. With the aid of the vast computation that is possible with today’s processing 

power, it has been possible to tabulate all possible moves when there are 6 or fewer pieces left on 

the board (even with today’s vast computational processing capabilities, the scale of complexity of 

chess is currently too great to do this when more than 6 pieces are left on the board). The analysis of 

all possible moves has permitted the perfect strategy to be exactly identified in any such scenario. 

No inference or estimation is necessary as the answers have been deduced and exhaustively 

tabulated. 

It would, however, be a highly mis-leading over-simplification to conclude that the chess end-game 

analogy is relevant to the prediction of future human social behaviour. Irrespective of the size of our 

data survey, the basic purpose of this data analysis remains fundamentally inferential: it is to use 

modelling techniques to make inductive inferences from the observed to the unobserved. In the 

context of predictive analytics, the observed lies in the past and the unobserved lies in the future. 

Predictive modelling is an exercise in induction, and it suffers from all the usual challenges that make 

inductive inference so fundamentally problematic, especially for social phenomena. 

There can be no doubt that the vast volumes of previously untapped data that are offered by the 

digital revolution can be capable of providing many new and powerful insights.  But inductive 

inference is intrinsically fallible, irrespective of the volume of our observational data. Its fallibility lies 

in the necessity for an assumption of a form of uniformity in the behaviour of the data over time 

(past, present and future). The data is always historical. For history to be a guide to the future, the 

future must be like the past. This may be a reasonable assumption for the behaviour of sub-atomic 

particles, but is less obviously robust for, say, the internet browsing tendencies of teenagers and 
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how they correlate with their spending habits. The data in big data studies of human behaviour may 

become obsolete quite quickly as behaviours and technologies change in inherently unpredictable 

ways. The shelf-life of a predictive model may therefore be very short, and its results always fallible. 

The Google Flu Trends story provides the most famous, or notorious, example of the fallibility of the 

analysis of big data. In the mid-2000s, a machine-learning algorithm was applied to data on vast 

numbers of individuals’ web browsing histories in order to generate predictions of flu infections 

rates in different geographical areas. This algorithm generated some impressive results in 2008 

when it accurately predicted where flu outbreaks would occur. And it did so around one week faster 

than the US government’s Centers for Diseases Control and Prevention were able to with their more 

conventional (and expensive) methods based on the collation of medical reports. But a few years 

later Google’s algorithm generated a substantial false positive: it predicted a major flu epidemic that 

never materialised. And because the algorithm has no causal structure (it is focused on predictive 

performance only), no one can be quite sure exactly why it failed. But the fundamental cause of the 

failure is inescapable: people’s internet browsing habits had, for some reason or other, changed in 

some important way that the algorithm had not predicted. It is hard to think of a more non-

stationary environment than the way people use the internet. This example highlights a fragility that 

is common to all inferential techniques: the assumption of some form of uniformity in human 

behaviour over time. The essential importance of this assumption does not diminish as n increases, 

even when it reaches the heady heights of ‘all’. 

Statistics and data science 

It was noted above that big data analytics and the machine learning algorithms that it employs are 

usually focused on predictive modelling. This might sound like an overly obvious statement – isn’t all 

statistical modelling in some sense used for prediction? The answer isn’t as straightforward as you 

may think. ‘Traditional’ statistical modelling has arguably been more concerned with providing 

descriptions of or a form of explanation for the joint behaviour of some phenomena, rather than 

prediction per se. When a medical researcher uses a statistical model to interpret the results of a 

Randomized Controlled Trial, they are testing some form of pre-specified hypothesis that has 

postulated a form of relationship between some phenomena of interest. Predictive modelling 

usually doesn’t start with any pre-specified hypothesis and doesn’t concern itself directly with 

whether a particular variable is significant in influencing the behaviour of the variable of interest. 

The process is simply focused on finding the algorithm that produces the best predictive 

performance (as measured by out-of-sample validation testing). What happens inside that process is 

treated largely as an incidental and noninterpretable black box, rather than as a hypothetical 

specification of causal probabilistic relationships408.  

The classical statistical methods established in the 1920s and ‘30s by Fisher, Neyman and Pearson 

used logic and mathematical theory to establish estimation or inferential methods that delivered, in 

some well-defined sense, optimal inferential solutions to well-specified problems under well-

specified conditions (a sample’s maximum likelihood estimate of a parameter value of a normal 

distribution, for example). This classical statistical theory was built using mathematically tractable 

parametric probability models where the dimension of the parameter vector was usually less than 

20. Computational power was limited, and the methods’ implementation relied on their 

mathematical tractability. 

 
408 See Shmueli (2010) for a more extensive discussion of the distinction between predictive and explanatory 
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The increasing availability of computational power that began with electronic computation in the 

1950s led to many new developments in statistical ideas, methods and techniques over the second 

half of the 20th century which were increasingly computationally intensive (examples include 

empirical Bayesian methods and the bootstrap). Such approaches can demand a thousand times 

more computation than the pre-war classical methods, but all or most of these 20th century 

innovations can still be quite naturally located within the framework of classical statistical theory. 

That is, they are still attempts to answer the questions defined by the classical theory. 

The 21st century world of machine learning contrasts more sharply with classical statistical theory. 

Little or no inferential parameter optimality theory exists today for machine learning algorithms. 

There are many different machine learning algorithms, but they share an essentially similar form: an 

optimisation process that works by computational trial-and-error on a vast computational scale. The 

data scientist is focused on what works well for a specific and often messy and very high-

dimensional problem. They are less interested in a theoretical justification for the method or its 

performance. In place of statistical theory, data scientists will commonly evaluate the performance 

of a new machine learning algorithm by benchmarking its predictive performance against well-

known publicly available large data sets. This can make statisticians uneasy. To quote from the 

influential Efron and Hastie (2016): “the very large data sets available from the internet have 

encouraged a disregard for inferential justification of any type. This can be dangerous. The 

heterogeneous nature of “found” data makes statistical principles of analysis more, not less, 

relevant.”409 

Classical statistical methods were, in the main, first developed by statistical theorists, and then put 

into action by data practitioners in a very wide range of fields (including the actuarial one, of 

course). The chronology of 21st century machine learning development has been reversed: new 

predictive algorithms are more likely to make their debut appearance in the computer science 

literature than the statistics literature. Innovative predictive algorithms are created in an 

experimental and ad hoc way at the coalface of high-dimensional big data applications with vast 

computational power on tap. Those algorithms that are identified as apparently working well may be 

heralded with much fanfare and hope. The statisticians currently tend to follow in their wake, 

working out how well they really work and why; and when and how they fit into their existing 

theoretical frameworks. 

Machine learning methods 

Machine learning algorithms can generally be viewed as a form of regression method. These 

regression methods, however, may look like only distant cousins of standard parametric linear 

regression or logistic regression models. The machine learning methods have been evolved by 

experience to perform well with very large data sets where the potential number of regression 

variables might number in the hundreds or even thousands. They do this by taking advantage of 

cheap computation and paying less attention to mathematical tractability or inferential logic. 

Let’s briefly consider at a high level some of the basic forms of machine learning algorithm and how 

they are fitted to data. The regression tree (sometimes called decision tree) method is perhaps the 

most standard, basic machine learning method. Its most common implementation method, 

Classification and Regression Trees (CART), is based on a method published in 1984410. Regression 

trees deliver a non-parametric, piecewise recursive partitioning of the data into homogenous 

groups. It is a classic example of computation replacing mathematical formulae. A number of 
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algorithmic rules exist that perform this data partitioning, with each recursive step splitting the data 

into two categories that are as distinct from each other as possible (or, equivalently, as homogenous 

as possible within each group)411. The regression tree method has been shown to be less efficient 

and accurate than some other more sophisticated machine learning algorithms, but it is very easy to 

computationally implement and requires virtually no assumptions about the particular probability 

model that is driving the phenomena, so it can quickly produce reasonable results for a very wide 

range of data and predictive problems.  

One of the fundamental technical challenges in the implementation of predictive models such as 

regression trees is avoiding ‘over-fitting’. Ultimately, any model can perfectly fit a set of data given 

enough parameters or algorithmic steps. But data contains both noise and signal, and the predictive 

modelling process aims to fit only to the latter. Statisticians conventionally manage the over-fitting 

problem by adjusting their fitting processes to penalise the number and / or magnitude of fitted 

parameters (the Akaike Information Criterion (AIC), which itself is a relatively modern development, 

first published in 1973, is one example of many such approaches that have been developed). The 

statistician would then use out-of-sample- validation as a way of independently checking the quality 

of the fitted model. 

Data scientists tend to use validation techniques more directly in the model selection / fitting 

process, and as their primary means of avoiding over-fitting. Validation means using another data 

set (distinct from the training set) to assess the discrepancy between the model’s predictions and 

the responses in the validation data. Validations can be performed on any number of candidate 

models, and the model that generates the lowest average discrepancy may then be selected as the 

preferred model. Some statisticians may argue that the point of validation testing is not to select a 

model, but to validate that the selected model works. This is perhaps another example of data 

science foregoing statistical formality for a brute-force assumption-free general method that usually 

works. More traditional statistical model selection methods such as the AIC can provide more 

accurate assessment of models, but such an approach rely on probability modelling assumptions 

that may or may not pertain to a given problem412. 

Out-of-sample validation means sacrificing some sample data by removing it from the training 

process and dedicating it to the validation exercise. In the context of the huge data samples available 

in Big Data problems, this sacrifice may not appear especially costly. However, the vast number of 

predictor variates that may be considered in these exercises demand a lot of training data in order to 

have a chance of predictive accuracy. So, methods that can limit this sacrifice of fitting data are 

valued. Cross-validation is one such approach. Suppose we have a number n of training data pairs. 

The usual validation approach would require removing 20% or 30% of the training data and 

quarantining it for validation testing. The cross-validation approach avoids this sacrifice. With the 

cross-validation method, n validation results are produced by re-training the model n times, each 

time with a single data point removed (variations exist where more than one point is removed in 

each validation run). The single removed point is independent of the training set and so can be used 

as a validation case. This produces n validation results for the model, and this process can be run for 

each candidate model. This clearly involves enormous computation. But, once again, that is no major 

problem for modern computing technology. In regression trees methods, cross-validation 

approaches are usually used to determine at what step to stop branching out further413.  
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In the 21st century, the increased understanding of the predictive power of ensemble modelling has 

been a major theme in the development of machine learning algorithms. The basic idea of ensemble 

modelling is not especially mathematically sophisticated: ensemble modelling involves constructing 

a predictive model as an aggregate of a number of independently fitted predictive models. Ensemble 

models have been found to perform consistently better than a single predictive model that is based 

on the same overall data set. Once again, the computational requirement is much greater, but today 

computation is cheap.  

The most prominent ensemble modelling example is the method known as random forests, which 

was introduced in 2001414. The random forests method is an ensemble method for regression trees. 

Random forests have produced some of the best-performing predictive machine learning algorithms. 

They do so by using a method that is again very general and that can be implemented virtually 

automatically without specific probability modelling assumptions. The basic idea of the random 

forest is to re-create the underlying data set many (i.e. thousands of) times using the bootstrapping 

re-sampling method. A regression tree is then fitted to each of these data sets. And the random 

forest is then constructed as the average of the fits of the regression trees. Cross-validation results 

are produced almost automatically as a result of the random forest algorithm. In each bootstrapping 

data re-sampling process, some of the data points will be left out of the re-constructed data set. 

These data points are therefore independent of the fit that has been produced for that data set and 

can be used as validation data. 

The random forest algorithm is easy to implement, in the sense that it does not require many 

probability distribution assumptions or fine tuning. But its non-parametric ensemble output 

structure can make it difficult to interpret, especially when the dimension of the predictor variables 

is high. Many other machine learning algorithms exist that can offer a different trade-off in terms of 

predictive performance, ease of implementation and transparency of output. These include 

boosting, neural networks (sometimes referred to as deep learning), support-vector machines and 

kernel methods. All of these can be viewed as some form or another of regression model, with an 

implementation emphasis on its use in prediction.  

Data science and hypothesis testing: the ‘multiple comparisons trap’ 

It was noted above that machine learning and big data analytics tended to place less emphasis on 

formal hypothesis and significance testing than is the case in conventional statistics. And you might 

expect that the vast scale of data used in big data exercises would make formal statistical 

significance testing nearly redundant. After all, the standard errors in the estimates from huge 

samples should be extremely small: if a relationship between two variables is implied by so much 

data, it surely can’t have arisen from random sampling error. 

But there is an important complication that commonly arises when considering this logic in the 

context of big data analysis: the process does not test one specific relationship of interest, but 

algorithmically searches out any relationship that can be found in the data. This is a quite different 

context to the usual hypothesis testing and significance testing situation. There, we may start with 

the null hypothesis that one specific relationship does or does not exist, and then test to see if the 

evidence in the data is strong enough to reject that hypothesis. In the big data context, we may 

similarly start with the null hypothesis that there are no relationships in the data, but then test many 

hundreds or thousands or even hundreds of thousands of different possible relationships. Suppose 

we use a 1% significance level. It is virtually inevitable, by the basic logic of probability, that some 

relationships will be identified as statistically significant in a set of completely random data – if we 
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test 5000 relationships at the 1% level, on average we will find 50 false positives. In machine 

learning, data scientists sometimes refer to this as the multiple comparisons trap415. Statisticians 

recognise this type of problem more generally in the form of large-scale hypothesis testing. 

How can the multiple comparisons trap be avoided? The simplest solution is to make the probability 

level for hypothesis or significance testing more severe. For example, it could be shifted to 0.1% or 

even 0.05% instead of the usual 1% or 5% used in classical statistical significance testing. The 

Bonferroni bound was one of the first approaches of this kind proposed in the statistics literature. It 

was developed in the context of large-scale hypothesis testing in the late 1950s and early 1960s416. It 

strengthens the significance level by a factor of 1/N, where N is the number of hypotheses being 

simultaneously tested. Today this is regarded as a highly conservative approach. Statisticians have 

developed a field called False Discovery Rate Control that provides a number of more sophisticated 

and complex rules for setting significance levels for large-scale hypothesis tests. These rules tend to 

produce less conservative significance level adjustments than the Bonferroni bound.417 

The drawback with the solution of making the significance level more severe is, of course, that by 

reducing the probability of false positives the probability of generating false negatives is inevitably 

increased. But if sample sizes of vast sizes are available (that meet the usual statistical testing criteria 

of being independent and identically distributed), then statistical tests of a high power may still be 

obtained, even with these unusually severe significance levels. 

There is a fundamental point lurking in this discussion – when searching for relationships in an 

entirely inductive and unstructured way, without any underlying theory about the relationships that 

hypothetically may exist within the data, then the quantity of well-behaved data required to reliably 

say anything is much larger than when we have established a prior reason to search for and test a 

specific relationship. This brings us to the next topic in this brief discussion of the methodology of 

machine learning and data science. 

Data science and the scientific method: correlation, not causation 

We noted above that big data analysis and its machine learning algorithms typically do not seek to 

provide causal explanations for why a given identified relationship holds (or indeed even if it holds 

with any particular level of statistical confidence). There is nothing to theoretically prohibit the 

researcher from specifying the predictor variables that will be used in the machine learning 

algorithm, perhaps in the hope of establishing explanatory relationships. But, more typically, the 

model simply goes with whatever the algorithm identifies from the data as working as a predictor. 

The dependency relationships that are identified as important (and, conversely, the relationships 

that can safely be assumed to be irrelevant) are of little direct interest. Instead, the focus is on the 

predictors’ collective role as a means to the ends of prediction. 

It is worth reflecting further on how this use of statistical modelling contrasts with the conventional 

application of statistical modelling in the scientific method as discussed in Chapters 2 and 3. We saw 

in Chapter 2.1 how Popper and the logical empiricists were able to fit probabilistic hypotheses into 

the hypothetico-deductive scientific method and its essential logic of falsification. To recap, when 

probabilistic statements are included within the hypotheses, these can be subjected to hypothesis 

testing, where the statistical significance of the hypothesised relationships is assessed. Depending on 

your philosophical persuasion (realist or instrumentalist), you may view these relationships as 
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explanatory or descriptive, but this difference is ‘merely’ philosophical, in the sense that it has little 

direct implication for the execution of the scientific method. 

As noted above, predictive modelling does not do statistics in this way. It does not specify structural 

or causal relationships for statistical evaluation. It simply searches everywhere (perhaps amongst 

thousands of variables) without prejudice or prior assumptions for whatever relationships it can find 

that are useful in out-of-sample prediction. In some cases, it may not even be possible to access 

what relationships have been identified by the modelling algorithm. The potential complexity of 

machine learning algorithms can create a ‘black box’ characteristic where it is not possible to trace 

the logical steps that have been used in the derivation of the model. This ‘non-interpretability’ or 

lack of ‘explainability’, as it is called in the field of artificial intelligence, may create challenges for the 

broader validation of the model and the decisions based upon its output. 

Some big data evangelists have rejoiced in this escape from the delusion that knowledge of 

causation is attainable: ‘The ideal of identifying causal mechanisms is a self-congratulatory illusion; 

big data overturns this.’418  Some have even argued that predictive analytics will herald the end of 

the hypothetico-deductive scientific method altogether419. Others have argued that predictive 

modelling can be a useful complement to the explanatory statistical modelling that has been used in 

the modern scientific method for the last 50 or 70 years or so. In particular, it has been argued420 

that predictive modelling may be useful in finding new empirical relationships that can then provide 

the impetus for the development of theories according to the hypothetico-deductive method. From 

here we might recall Chapter 2.3 and its discussion of empirical generalisations such as Boyle’s Law. 

Such laws were merely noted recurring empirical relationships, stated without any argument for why 

such a relationship exists. The why, such as the Ideal gas law, that deduces the empirically-observed 

relationship (and other testable relationships so as not to be merely ad hoc) from some prior basic 

premises, may then follow.  

It seems, in principle, quite feasible that predictive modelling can find new empirical generalisations 

amongst observable phenomena. This, obviously, requires the predictive modelling to deliver its 

output in terms of transparent and interpretable relationships between the variables in the data, 

and not just in its usually currency of out-of-sample predictive power. And it requires critical thought 

to manage the potential problem of false positive discovery rates that will likely arise from such 

processes (Chapter 2.1’s discussion of the ‘replication crisis’ will be particularly germane in the 

context of vast indiscriminate searches of unstructured data). 

Data science and actuarial science 

Actuarial science, of course, has a long history of working with large data sets to generate 

probabilistic forecasts of the future. An excellent early historical example of actuarial work with very 

large data sets can be found in the pooling of life office mortality experience. This, in data science 

parlance, might be thought of as a 19th century attempt at n = all data analysis: the ambition was to 

combine life assurers’ mortality experience data to provide an analysis of all life assurance 

experience. In 1881, American actuaries published the Thirty American Offices’ mortality tables, 

which used the mortality experience data of over 1 million life assurance policies over the 30-year 

period between 1844 and 1874421.  
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The calculations employed in the data analysis of the 1870s American actuary, however, profoundly 

differ from those used by the machine learning algorithms above. And the mortality modelling 

methods of the 2020 American (or indeed any other) mortality actuary will probably share more in 

common with the 1870s actuary than with the machine learning predictive analytics described 

above. Nonetheless, data science does share some significant methodological similarities with 

actuarial science. Chapter 5 noted how philosophers of science characterised actuarial science using 

terms such as empirical, applied, local, approximate and bottom-up. These terms are also quite 

applicable to data science. Indeed, the above discussion of machine learning methods might suggest 

that terms such as these apply to data science even more emphatically than they do to actuarial 

science. This suggests the techniques of data science might fit quite naturally into the statistical / 

predictive toolkit of the actuary.  

As noted above, machine learning algorithms can be cast as some form of regression method. As has 

been pointed out in recent actuarial literature422, many actuarial models can also be cast as a form of 

regression model. Non-life insurance pricing formulae, mortality forecasting models, and curve 

fitting of asset and liability valuation projections are all clear examples. This makes the scope of 

application for machine learning within actuarial science potentially very wide. Recent studies have 

begun the process of evaluating the impact that data science methods can have on actuarial 

problems. These impacts can be considered in the two dimensions of the digital revolution: the 

impact that machine learning algorithms can have when these computationally intensive techniques 

replace the traditional statistical techniques conventionally applied in actuarial science; and the 

impact of the increase in the type and volume of potentially relevant data that is available for use in 

actuarial problems.  

There are a number of studies in the contemporary actuarial literature423 that consider only the first 

of these dimensions – that is, where machine learning algorithms replace conventional actuarial 

probability models and are applied to the usual actuarial data. For example, a recent study 

compared the performance of neural networks with that of the Lee-Carter mortality model in long-

term mortality forecasting424. Another recent study showed how various machine learning 

algorithms perform as an alternative to generalized linear models in motor insurance claims 

frequency modelling425. However, in both of these examples, machine learning algorithms did not 

provide a meaningful improvement in out-of-sample predictive errors relative to the contemporary 

versions of the actuarial probability models. This seems fairly intuitive: these problems are not big 

data problems (at least not in the context of these studies). The mortality study used 59 annual data 

points for 80 age groups. The predictor variate is of low dimension in both cases – there are 9 

predictor variables in the motor insurance example, and 2 in the mortality example. It is not obvious 

what machine learning algorithms can do with this data that conventional probability modelling 

methods cannot. 

The situation is much more interesting when the nature of the data that is available for actuarial use 

is fundamentally different to historical actuarial norms. New forms of data with potentially 

significant value to insurance underwriting and product design has undoubtedly started to emerge in 

major scale in recent years. For example, the idea of the ‘Quantified Self’, which refers to the 

cultural phenomenon of individuals self-tracking various aspects of their physical and medical 
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experience, often using wearable technology, has the potential to revolutionise life and health 

underwriting. But perhaps the most-developed example of this data revolution for insurers can 

today be found in motor insurance in the form of the telematic data that can be provided by sensors 

in motor vehicles (and parallels are likely with other forms of non-life insurance that are touched by 

the ‘Internet of Things’). A range of vehicle sensors may be installed in cars. But just one single GPS 

sensor delivering second-by-second location data may provide information of transformational value 

for underwriting purposes. Why? Because such high frequency location data can allow the driver’s 

speed and acceleration patterns to be observed.  

Traditional actuarial techniques arguably do not provide an obvious answer for the most effective 

handling of second-by-second data feeds. Recent actuarial literature has investigated how machine 

learning algorithms can use this speed / accuracy data to classify driving styles426. This classification 

can, for example, allow a ‘safe driving index’ to be measured for individual drivers. Research on the 

implications of this telematics data for motor insurance pricing is still in its early stages. But this 

study has suggested that the inclusion of these driving style classifications, derived solely from 

telematics data, significantly improves out-of-sample prediction for motor insurance claims 

frequency, and may even be more important than ‘classical’ motor insurance rating factors such as 

driver’s age.  

Again, the methodological conclusion here is intuitive. When the data available to the actuary 

becomes much bigger (both in number of observations and number of dependent variables), it is 

likely we will be entering a domain that is ill-suited to traditional statistical techniques and that is 

instead the natural hunting ground of machine learning algorithms. In such circumstances, these 

techniques may be indispensable tools in the development, pricing and ongoing management of 

insurance products. In short, the availability of this type of data is likely to revolutionise insurance 

pricing, and it is likely that machine learning techniques will be necessary to make the most use of it. 

As always, the actuary’s role will require judgment to be exercised in interpreting what these models 

can be used to reliably infer, and how this can be most effectively put to commercial use (and within 

ethical boundaries).  

The Actuarial Profession and its Science: A Sociological Perspective 

Most professions, most of the time, have professional jurisdictions whose boundaries are in a 

constant state of flux. Professions are generally about the trusted delivery of expert services to 

human problems. New theories and technologies, exogenous factors such as trends in societal 

demands and so on change the nature of these tasks and the level of demand for them, thereby 

creating opportunities and threats in which professions compete with each other to adapt, survive 

and thrive. This interprofessional competition is a fundamental driver of how professions evolve 

through time. For many years, the actuarial profession had an unusually stable professional 

jurisdiction. In the late 1980s, one of the world’s leading sociologists of the professions noted that 

the actuarial profession was ‘atypical’ in its lack of interest in expanding its professional 

jurisdiction427.  

Over the last twenty years, however, this picture has altered somewhat radically for the actuarial 

profession. Since then, much of the profession’s ‘heartland’ legally-protected jurisdictions have been 

in a form of existential crisis: Defined Benefit pension funds are now in a state of managed terminal 

decline; with-profit funds even more so. At the same time, some of the financial theory and 

knowledge that has been developed by economists over the second half of the twentieth century 
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has increasingly led to the economics profession challenging some of the traditional methods of 

actuarial practice by reducing apparently opaque actuarial problems into well-understood tasks 

amenable to economic theory. The actuarial profession’s reaction has sometimes been caught 

between indecision on whether to absorb this knowledge into its own methods and systems or to 

reject the knowledge as irrelevant to the profession’s tasks. Unsurprisingly, these circumstances 

have also led the profession to place new energy on the identification of new tasks for its skills. 

‘Wider fields’ has been a continuing preoccupation of the profession’s leadership since the start of 

the twenty-first century, if not before.  

Abbott argued that it was what he called a profession’s ‘abstract knowledge systems’ that allowed 

professions to adapt and claim new professional jurisdictions. Indeed, he argued, the presence of 

such abstract knowledge systems are an important part of what differentiates a profession from 

other occupational groups: ‘Many occupations fight for turf, but only professions expand their 

cognitive dominion by using abstract knowledge to annex new areas, to define them as their own 

proper work’.428  

‘Abstract’ here means knowledge that is transferable, that it can be applied to a range of different 

specific problems. Such knowledge provides professions with the power to identify new domains 

and applications for their skills, and to compete to perform tasks that are currently performed by 

other professions, and to help explain why they are the right experts for their existing jurisdictions.  

Data science and the actuarial profession 

Does this perspective on the evolution of professions help us understand how the increasing 

relevance of data science might impact on the future professional activities of actuaries? It is natural 

that some actuaries will specialise in research on data science techniques and their application to 

questions within the professional actuarial domain. Some actuaries who specialise in data science 

may also venture outside of the actuarial domain and find other applications for their data science 

expertise.  

It is likely to be equally important for the profession to work collaboratively with non-actuarial data 

scientists in the application of data science techniques to actuarial problems. Many professions can 

seem insular and impenetrable to outsiders. The actuarial profession has doubtless been historically 

subject to such claims. It is easy for collaboration between any two professions or disciplines to 

descend into little more than jurisdictional competition and rivalry.  

Actuarial science is arguably unusual in the extent to which it makes use of technical knowledge that 

is independently developed by other professions and disciplines (such as statistics and economics). It 

is therefore likely to be crucial to the long-term quality of the technical content of professional 

actuarial work that the profession can find positive ways of collaborating with other technical 

disciplines in order to successfully incorporate the new technical knowledge developed outside the 

profession into actuarial science. The profession’s long-term historical record in this respect, in areas 

such as economics, has arguably been somewhat mixed. But the above discussion has highlighted 

how the technical content of data science fits into actuarial science quite naturally. From this 

perspective, the interesting historical case of architects and structural engineers can perhaps 

provide an inspiring model of how technological transformation can give rise to new technical 

professions which successfully work alongside long-established learned professions in mutual self-

interest and in the interests of their clients. 
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Appendix – The historical development of economics 
Economic thought can be found, to a greater or lesser degree, throughout all of the major 

philosophical epochs since the Ancient Greeks. There is some treatment of topics of economics in 

the writings of Plato, but it is the work of Aristotle that earns him the accolade of being ‘the first 

analytical economist’429. He wrote most notably on the analysis of exchange and the role for money 

that it created. 

The Romans left behind very little by way of philosophical writings about economic ideas. The 

monastic philosophy of the medieval times also did not particularly focus on economic thought. The 

ideas of this era tended to have a strong moral and religious dimension (such as the prohibition of 

taking interest from lending) rather than a positive focus on developing economic organisation for 

the purposes of improved production or distribution of wealth. These meagre developments in 

economic thought reflected the prevailing economic reality of society. The very limited opportunities 

for profitable investment in the medieval economy meant that money lending tended to be an 

activity that focused on the exploitation of the needy. The relatively simple forms of economic 

structures and relationships that prevailed provided little inspiration for developments in economic 

theory. 

Petty, Hume and Smith 

With the middle ages coming to an end, the fifteenth, sixteenth and seventeenth centuries saw 

economic society develop rapidly. Revolutions in farming methods increased agricultural 

productivity and rendered long-standing feudal relationships unsustainable. Maritime adventure 

brought the beginnings of international trade. Economic thought started to reflect these new 

circumstances. Most notably, Sir William Petty’s economic writings of the 1680s discussed the 

productivity benefits that could accrue from the division of labour and the role this played in the 

development of large towns430. 

It was the period of the Enlightenment that saw economics emerge as an established field of study. 

David Hume offered some economic thinking within his great philosophical works, such as his 

chapter On Property and Prices in Book II of A Treatise of Human Nature, first published in 1739. His 

essay On Money431 is now regarded as the definitive 18th century version of the quantity theory of 

money (though not as the first quantity theory of money, which is usually credited to the Frenchman 

Jean Bodin in his book of 1569432).  

But it was Adam Smith’s An Inquiry into the Nature and the Causes of the Wealth of Nations, 

published in 1776 in the midst of the beginnings of the Industrial Revolution, that proved to be the 

most influential and durable contribution to economic thought of the eighteenth century. It is often 

taken as the starting point for modern economics and Smith has been said to be ‘universally 

acknowledged as the founder of classical political economy’433. Smith, like Hume, was a Scots 

philosopher, but Smith fully ‘converted’ to the study of economics, and in so doing became the first 

academic economist. Few of the ideas in Wealth of Nations were truly original. But his compelling 

articulation of these ideas as part of a coherent structure of economic thought had an immediate 
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and lasting influence on businessmen, politicians and generations of future academic economists 

alike. 

Ricardo 

The end of the Napoleonic Wars and the economic management of its aftermath proved a 

stimulating period for the development of economic theory, ushering in the era of what is now 

known as classical political economy. David Ricardo was by far the most influential economist of this 

period. His 1817 book On the Principles of Political Economy and Taxation developed a theory of 

economic development that described the dynamics of how the distribution of wealth between 

landowners, workers and capitalists would change over time (he took the total size of this wealth, 

the ‘national dividend’, essentially as a given). Ricardo’s Principles is recognised as the first attempt 

at an axiomatic, deductive approach to developing an abstract economic theory, in contrast to the 

mainly rhetorical and historical style of economic writing that prevailed until then.  

Ricardo’s theory can be viewed as a reaction to the contemporaneous controversy over the Corn 

Laws. The Corn Laws were tariffs on the import of grain from overseas, put in place in 1815 to 

protect domestic farmers and their landowners from overseas competition. To Ricardo, the Corn 

Laws raised the question of how wealth was distributed between landowners and capitalists. He 

argued that workers would receive a subsistence wage that would just cover the cost of basic food, 

irrespective of the cost of that food (and hence irrespective of the size of the food tariff). The Corn 

Laws therefore would not have a direct impact on worker’s quality of life, but they would determine 

the cost of food, the commensurate level of wages and, consequently, the level of capitalist profits. 

Meanwhile, the profitability of food production would impact on the rent that landowners could 

obtain from their land. 

The essential conclusions of Ricardian economics were dismally Malthusian (and, indeed, Ricardo 

and Malthus were close correspondents and later rivals). Malthus’ concerns with the sustainability 

of the significant population growth of the era were given a new economic rigour by Ricardo. 

Ricardo postulated that agricultural land could be ranked according to its fertility and productivity; 

farmers would use the most productive land available; as the population increased, more 

agricultural land would be required to deliver the necessary food supply, and this would mean using 

increasingly less productive land; the impact of this reduction in the quality of land used would more 

than offset the improvements in agricultural productivity that could be expected to arise from 

technological development; the cost of growing food would therefore rise and hence so also would 

food prices and workers’ subsistence wages; in manufacturing, however, technological 

improvements would reduce the price of goods; business profits would tend to fall as an indirect but 

inevitable consequence of the increasingly inefficient use of land in less-productive agriculture and 

the need to provide increased subsistence wages for the larger working population. The economic 

winner of all this was the landlord, who could take advantage of the demand for his poorer quality 

land and charge higher rent (which then goes further in its purchasing power for manufactured 

goods), and hence would obtain a rising share of national income. 

Ricardo used his theory to argue for the repeal of the Corn Laws – they merely aggravated the 

economic problems that his theory showed inevitably arose from a growing population. More 

generally, Ricardo was a strong advocate of international free trade. The Corn Laws were eventually 

repealed, but not until 1846, over twenty years after his death.  

As an empirically tested deductive scientific theory, Ricardo’s theory of economic development 

failed as fully as any economic theory has ever done – the unfolding reality of the 19th century 

looked nothing like the predictions of Ricardo’s theory. It might be argued this was because some of 



his key premises – such as that the agricultural productivity increases that could be delivered by 

science and technology would not be adequate to offset the reduction in the quality of agricultural 

land that resulted from population growth – proved to be wholly unrepresentative of the emerging 

reality: ‘Ricardo’s type of economics, then, consisted of conclusions reached by reasoning from a few 

broad assumptions that over-simplified the facts…Consequently, most of the conclusions which 

Ricardo drew about the future have proved to be mistaken.’434  

The sweeping implications of Ricardo’s theory did not require advanced 20th century quantitative 

techniques for them to be determined as clearly at odds with the unfolding reality of the 19th 

century. For example, in the decades following the publication of Principles, the share of national 

income paid as rent evidently did not increase as predicted by Ricardo; real wages did significantly 

increase; and wheat prices fell (even before the repeal of the Corn Laws that eventually arrived in 

1846, though, as we will note later, not after). 

Nonetheless, Ricardo’s work was hugely influential, both for its theoretical content, and, to a lesser 

but still important degree, for its deductive methodology: as we shall discuss more fully in Chapter 

4.2, when its empirical failings became apparent, the theory was defended by economists as a 

logically self-consistent piece of reasoning whose postulates merely happened to differ from the 

reality of that particular period in time. 

Mil and Schmoller 

The next highly notable pillar of classical political economy was erected by John Stuart Mill in the 

1830s and 1840s, most notably in his 1848 book Principles of Political Economy. Mill’s economics can 

be regarded as a natural development and refinement of Ricardo’s. Mill was one of the first 

philosophers to write extensively and explicitly about methodology in economics. Mill’s perspectives 

on methodology are discussed in some detail in Chapter 4.2. It can be immediately noted that Mill, 

influence by Comte and an advocate of a positive social science, wrote in support of Ricardo’s 

abstract theory and deductive methods (though Mill argued that universal ‘physical’ economic laws 

could only be discovered in the study of the production of wealth, but not in its distribution435; this is 

especially notable given Ricardo’s most famous theory was specifically focused on distribution rather 

than production).  

However, another school of thought, the German historicist school, started to emerge in the 1840s 

which rejected the idea of economics as an abstract, deductive science. This school reached its 

greatest influence under Schmoller in the final quarter of the nineteenth century (though it also 

influenced the American institutionalist school of the 1920s and 1930s founded by Veblen that was 

similarly sceptical of positive economic methodology and deductive economic theory). Schmoller 

argued, in an early example of German interpretivism, that only detailed study of concrete historical 

episodes could lead to economic knowledge.  

The Marginal Revolution, the Methodenstreit and the emergence of neoclassical economics 

Economics as a discipline of the social sciences underwent a revolutionary change – often referred to 

as the Marginal Revolution - in the late nineteenth century. It was revolutionary in the sense that it 

replaced the classical political economy of Smith, Ricardo and Mill with a new and more 

mathematical approach to abstract, deductive economic theory. Crucial to this shift was the idea of 

utility theory. More specifically, the concept of marginal utility, a law of diminishing marginal utility 

and the behavioural postulate of individuals motivated to maximise their utility were the 
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fundamental ideas that radically altered the nature of economic analysis436. This shifted the focus of 

economic analysis away from a stratified view of society (landowners, workers and capitalists) and a 

labour cost theory of value to individuals and their consumption preferences and a theory of value 

based on utility. These ideas were developed independently but contemporaneously by a number of 

economists in the 1870s, the three most important being W.S. Jevons437, Leon Walras438 and Carl 

Menger439. 

Clearly, the methodological underpinnings of the Marginal Revolution – which involved a 

commitment to abstract, deductive methods to discover universal laws of a positive economic 

science - were antithetical to the methodological thoughts of Schmoller and the historical school. 

This led to a famous methodological dispute, the Methodenstreit, between the two schools. This 

disagreement eventually wore itself out as most reasonable economists started to recognise that the 

two perspectives could be viewed as complementary rather than mutually exclusive.  

The first steps in the ‘mathematisation’ of economics can arguably be regarded as implicit in 

Ricardo’s embrace of logically deductive abstraction. But the work of the economists of the Marginal 

Revolution, and most especially Walras, placed increasingly sophisticated mathematical technique at 

the core of the deductive logic of abstract economic theory. This trend was continued at the start of 

the twentieth century at Cambridge by Alfred Marshall and, to a greater degree, A.C. Pigou. On the 

European continent, the work of Vilfredo Pareto440 in the first decade of the twentieth century was 

another key strand in the development of mathematical economic theory and neoclassical 

economics. Marshall, Pigou and Pareto and others such as Irving Fisher in the US collectively refined 

the theory of the Marginal Revolution into what is now known as neoclassical economics.  

The century of historical developments from Ricardo to Pareto can be seen as a long-term program 

to form economics into a positive scientific discipline with a logico-mathematical content of a scale 

and sophistication that was (and still is) unique for a social science. Neoclassical economics was 

deductive, increasingly mathematical, based on methodological individualism (that is, built on 

behavioural postulates for individuals, and specifically assuming they acted rationally), and showed 

that free markets tended to quickly obtain equilibria that could be viewed in some specific sense as 

optimal. Much of neoclassical economics was therefore mainly concerned with ‘comparative statics’; 

that is, the comparison of the equilibria produced under different circumstances.  

Keynes 

This system received a major challenge from within in 1936 in the form of John Maynard Keynes’ 

General Theory of Employment, Interest and Money. Like Ricardo’s work, Keynes’ General Theory can 

be seen as a reaction to the economic challenges of its age. As noted above, the backdrop to 

Ricardo’s work was the aftermath of the Napoleonic Wars and the implementation of the Corn Laws; 

in Keynes’ case, it was the aftermath of the First World War and the economic depression and mass 

unemployment that arose in the years that followed which provided the crucial historical context 

and impetus for his work. The postulates and implications of neoclassical economics did not appear 

to marry well with the empirical reality of the economic aftermath of the First World War. And that 

reality was crying out for credible economic guidance.  
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Keynes was, by this time, a Cambridge economics scholar, schooled particularly in the works of 

Marshall and Pigou. His General Theory was provocative and controversial, and not only to the older 

generation of more conservative economic thinkers of the neoclassical paradigm. Frank Knight, an 

acclaimed American contemporary of Keynes, for example, wrote that Keynes ‘succeeded in carrying 

economic thinking well back to the dark ages”441.  

The methodological approach of Keynes’ General Theory was incongruous to the neoclassical 

economics that had been established over the fifty years prior to its publication. One of the 

distinctive features of Keynes’ macroeconomics was to move beyond the methodological 

individualism of neoclassical microeconomics by explicitly considering aggregate phenomena such as 

total national savings as variables in his theory442. Another characteristic of Keynes’ approach was his 

rejection of the idea that markets could be relied upon to efficiently reach static ‘optimal’ equilibria. 

His theory was therefore most interested in the dynamic (and potentially long) process by which 

markets could regain equilibrium (rather than the comparison of alternative static equilibria that 

characterised neoclassical economic theory). 

Keynes sought no quarrel with how neoclassical economic theory’s deductive consequences had 

been logically derived. Rather, his argument was that the basic premises and postulates of 

neoclassical theory were too far removed from the real economic word. Keynes offered a geometric 

analogy: neoclassical economics was attempting to apply Euclidean geometry to a non-Euclidean 

world, and economists had yet to realise that the axiom of parallels must be replaced in order for 

the subject to achieve empirical success. Coming only a couple of decades after Einstein’s (non-

Euclidean) theory of relativity, this analogy can be seen as Keynes’ attempt to both compliment the 

neoclassical school (by comparing them with Newton) whilst highlighting that there was a need for a 

more advanced theory of which the original theory could be considered a special case or 

approximation. Whilst Newtonian mechanics, however, can be seen to provide a highly accurate 

approximation to the theory of relativity for the vast majority of practical purposes, Keynes had in 

mind a theoretical development in macroeconomic theory in which neoclassical economics would be 

a very restricted special case that he deemed irrelevant to the prevailing macroeconomic 

environment. 

Keynes argued that the postulates of neoclassical economic theory assumed away the possibility of 

‘involuntary unemployment’ (which he defined as where people are unemployed who would be 

willing to work for less than the then-prevailing real wage). Prior to the General Theory, economists’ 

standard explanation for the then-new phenomena of mass unemployment was the ‘stickiness’ of 

wages – that is, that workers were reluctant to accept a reduction in money wages, irrespective of 

what it implied in real terms. Consumer prices experienced a major deflation in the 1920s and early 

1930s (in the UK, the Consumer Price Index fell by almost 40% between 1920 and 1934). According 

to the standard economic explanation, wage ‘stickiness’ resulted in wages failing to adjust down to 

their new (real) equilibrium level. A surplus of supply of labour (mass unemployment) arose as an 

inevitable result of this disequilibrium. From this perspective, a period of inflation could remedy 

mass unemployment by reducing the real level of wages back down to its equilibrium level.  

Keynes agreed that the phenomenon of wage stickiness did exist, but argued it was an inadequate 

explanation of the growth in mass unemployment since the end of the First World War443. Keynes 

therefore argued that, contrary to the neoclassical theory, reducing nominal money wages via a 
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dose of inflation would not eradicate this new phenomenon of mass unemployment. He argued that 

the nub of the problem was the neoclassical postulate sometimes referred to as Say’s Law, which 

says that ‘the aggregate demand price for all volumes of output as a whole is equal to its aggregate 

supply price for all volumes of output’. This, he argued, assumes away the possibility of involuntary 

unemployment arising. Keynes argued that the behaviour of aggregate demand could be more 

complex than was implied by Say’s Law, and this could result in an equilibrium level of employment 

below full employment. 

This led to the perhaps most controversial part of Keynes’ theory – that in such times that 

involuntary unemployment existed, the State could (and indeed should) invest in public works that 

would raise the prevailing employment equilibrium closer to full employment. Moreover, the 

increase in employment engendered by this investment would be much greater than the direct 

employment undertaken by the State – the consumption triggered by their employment would, in 

turn, create demand that produced further employment. Keynes’ theory, and his indicative 

calibration of it, suggested a ‘multiplier’ of approximately four would typically apply. The size of the 

multiplier would be determined by the newly-employed’s marginal propensity to consume – a law-

like description of the consumption and saving tendencies of the population. Keynes noted that this 

was a ceteris paribus argument – if this new investment altered other investment intentions, say, by 

causing an increase in the interest rate as a result of increased borrowing to fund the investment, 

the effect would be dampened (and Milton Friedman argued twenty years later that this increase in 

the interest rate would completely offset the impact on aggregate demand of the increased 

investment444). 

The relationship between consumption, investment and employment that Keynes derives from the 

postulated marginal propensity to consume represents a key element of Keynes’ General Theory. 

Keynes’ theory of interest rates represented another key strand of his General Theory. Keynes 

argued that interest rates were largely determined by liquidity preferences – that is, an individual 

was induced to exchange cash for a bond by an illiquidity premium. This was distinct from the 

classical and neoclassical view that the rate of interest was determined by the way the supply of 

savings and the demand for investment varied as a function of the interest rate. In Keynes’ scheme, 

savings and investment could not be viewed as independently varying quantities for which a clearing 

rate could be found: instead, both savings and investment were determined by the levels of 

consumption and income, not the rate of interest. And the rate of interest was not determined by 

finding the level that matched savings and investment. Rather, savings and investment were 

identical by definition under the Keynes system, and the rate of interest was determined by the 

quantity of money and liquidity preferences. 

Post-War Economics 

Keynes’ General Theory had a pervasive global impact on the research agenda of economists for 

several decades. The macroeconomics of the second half of the twentieth century was dominated by 

debate between Keynesianism and the competing macroeconomic framework of monetarism, as 

developed by Milton Friedman and others445. Monetarists argue that changes in income (or output) 

are largely caused by changes in the money supply (via changes in interest rates). Friedman argued 

that the cause of the Great Depression of the 1930s was not a lack of investment, as was argued by 

Keynes. Instead, Friedman argued, the cause of the Depression was a great contraction in the money 

supply. The debate had particular resonance in the 1970s following the oil crisis and recession of 
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1973 – was Keynesian fiscal stimulus the answer, or, as Friedman would advocate, a monetary 

stimulus by the central banks the most effective response? This debate remains alive today, both in 

terms of the theoretical correspondence of the two systems, and their empirical confirmation. But 

the very existence of this debate highlights a profound change from the pre-Keynesian neoclassical 

economics of self-correcting markets and economies: some form of government intervention is now 

regarded as necessary to ‘steer’ the macro-economy on a path of sustainable growth, the debate is 

merely about which form of instrument of government intervention is more effective. 

Some of the other major themes in post-war economics include the emergence of financial 

economics (and its especially notable development between Modigliani-Miller in 1958 and Black-

Scholes-Merton in 1973); attempts at the development of the ‘micro-foundations’ of 

macroeconomics (which sought to explain how ‘bottom-up’ modelling of individual human 

behaviour could result in macroeconomic systems; this is now generally viewed as a failed program 

in the sense that the propositions of the two disciplines of micro and macroeconomics cannot be 

derived from one another); behavioural economics; and the increasing significance of econometrics 

as a specialism of economics. 

Across several of these topics, the trend of further mathematisation of economic theory is evident. 

The increase in mathematical content of economics that took place during the quarter-century 

following the end of the Second World War was described as an ’unprecedented development’ in 

Wasilly Leontief’s 1971 Presidential Address to the American Economic Association446. It has even 

been described as a form of Kuhnian revolution (the ‘formalist revolution’) by some economic 

writers (though it is a revolution in methodology rather than in the substance of the paradigms of 

economic theories that are accepted by the economics profession)447. The most prominent 

economists of the second half of the twentieth century such as Paul Samuelson have been 

instrumental in these developments. 
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